
RPDP for Windows®
Operation

Software Manual

SEE-3-133(A)

RPDP for Windows®
Operation

Software Manual

First Edition, May 2020, SEE-3-133(A)

All Rights Reserved, Copyright © 2020, Hitachi, Ltd.

The contents of this publication may be revised without prior notice.

No part of this publication may be reproduced in any form or by any means without permission in
writing from the publisher.

Printed in Japan.

TP<IC> (FL-MW2007)

S-1

 WARNING

NOTICE

SAFETY PRECAUTIONS

 Before building a system, creating or program, or otherwise using this product, carefully read the

contents of this manual to ensure that you have a sufficient understanding of the instructions and
warnings herein. Incorrect operations might result in system failure.

 Keep this manual in a readily accessible place so that users can refer to it quickly as needed.
 If you are uncertain about any of the information contained in this manual or if any information is

unclear, contact our nearest company location or your SE.
 Hitachi is not responsible for accidents or damage caused by incorrect customer use of the

product.
 Hitachi is not responsible for accidents or damage caused by use of the product after the

customer has modified the Hitachi-provided software.
 Hitachi is not responsible for product reliability in cases where software other than that provided

by Hitachi is used.
 Include file backups as part of your daily operations. The contents of files might be lost because

of a failure in a file device, a power failure that occurs while files are being accessed, incorrect
operations, or other reasons. Back up files regularly as a safeguard against such situations.

 To ensure sufficient safety with respect to the system being used even in cases of product failure,
incorrect operations, or program defects, design your system so that the protective and safety
circuits are located externally, and implement sufficient safety measures with respect to injuries
and major disasters.

 Configure the system so that the emergency stop circuit, interlock circuit, and other such circuits
are outside the PLC. PLC failure might result in product failure or accidents.

 Sufficiently verify safety before performing such actions as modifications to a program that is
operating, forced output, or a RUN or STOP instruction. Incorrect operations might result in
product failure or accidents.

 Safety precautions in this manual are classified into four levels according to the severity of
potential hazards: DANGER, WARNING, CAUTION, and Notice.

: Indicates a hazardous situation which, if not avoided, will result in death

or serious injury.

: Indicates a hazardous situation which, if not avoided, could result in death

or serious injury.

: Indicates a hazardous situation which, if not avoided, could result in minor

or moderate injury.

: Indicates a danger (resulting from incorrect use of the product) that can

cause property damage or loss not related to personal injury if the safety
precautions are not observed.

Failure to observe precautions marked with CAUTION or NOTICE could also lead to a
serious consequence depending on the situation in which the product is used. Therefore, you must
observe all of those precautions without fail.

The following are definitions of serious injury, minor or moderate injury, and property damage or
loss not related to personal injury used in the safety labels.

 DANGER

 CAUTION

S-2

Serious injury: Is an injury that has aftereffects and requires hospitalization for medical treatment
or long-term follow-up care. Examples of serious injuries are as follows: vision loss, burns (caused
by dry heat), low-temperature burns, electric-shock injuries, broken bones, and poisoning.
Minor or moderate injury: Is an injury that does not require either hospitalization for medical
treatment or long-term follow-up care. Examples of minor or moderate injuries include burns and
electric-shock injuries.
Property damage or loss not related to personal injury: Is damage other than personal
injury. Examples of property damage or loss not related to personal injury are as follows: damage or
loss of personal property, failure or damage of the main unit of the product, and loss of data.

The safety precautions stated in this manual are based on the general rules of safety applicable to
this product. These safety precautions are a necessary complement to the various safety measures
included in this product. Although they have been considered carefully, the safety precautions
posted on this product and in the manual do not cover every possible hazard. Common sense and
caution must be used when operating this product. For safe operation and maintenance of this
product, establish your own safety rules and regulations according to your specific needs. A variety
of industry standards are available to aid in establishing such safety rules and regulations.

S-3

Revision History

Revision No. History (revision details) Issue date Remarks
A First edition May 2020

This Page Intentionally Left Blank

i

PREFACE

This manual describes how to create real-time programs that run on the CPMS of the S10VE.

 The following table shows the related software manuals.

Manual number Manual name
SEE-3-201 S10VE Software Manual CPMS General Description and Macro Specifications
SEE-1-001 S10VE User’s Manual General Description

 Note that the following terms have special meanings in this manual:

Abbreviation Official name
RPDP Realtime Program Developing Package for S10VE
CPMS Compact Process Monitor System
PCs Programmable Controllers
PLC Programmable Logic Controller

 This manual consists of PART 1 GENERAL DESCRIPTION, PART 2 COMMAND

REFERENCE, AND APPENDIXES.

PART 1 GENERAL DESCRIPTION
This part describes how to develop real-time programs that run on the SV10E and provides an
outline of the commands used for development.

PART 2 COMMAND REFERENCE
This part is a reference for the commands used to develop real-time programs that run on the
S10VE. This part describes the functions of each command, as well as optional functions.

APPENDIXES
The appendixes provide points to note when developing real-time programs that run on the
S10VE, error messages, and the formats in which the results of executed commands are
displayed.

ii

<Trademarks>
• Microsoft® and Windows® are either a registered trademark or trademarks of Microsoft

Corporation in the United States and/or other countries.

<Note for storage capacity calculations>
 Memory capacities and requirements, file sizes and storage requirements must be calculated

according to the formula 2n. The following examples show the results of such calculations by 2n
(to the right of the equal signs).
1 KB (kilobyte) = 1,024 bytes
1 MB (megabyte) = 1,048,576 bytes
1 GB (gigabyte) = 1,073,741,824 bytes
1 TB (terabyte) = 1,099,511,627,776 bytes

 As for disk capacities, they must be calculated using the formula 10n. Listed below are the

results of calculating the above example capacities using 10n in place of 2n.
1 KB (kilobyte) = 1,000 bytes
1 MB (megabyte) = 1,0002 bytes
1 GB (gigabyte) = 1,0003 bytes
1 TB (terabyte) = 1,0004 bytes

iii

CONTENTS

PART 1 GENERAL DESCRIPTION

CHAPTER 1 OVERVIEW .. 1-2
1.1 About RPDP ... 1-2
1.2 Commands ... 1-4
1.3 Using the Different Processors (CP and HP) ... 1-7

1.3.1 Configuration and roles ... 1-7
1.3.2 Programming environment .. 1-9
1.3.3 RPDP functions and specifications of the CP and HP sites ... 1-10

CHAPTER 2 PROCEDURES FOR PROGRAM DEVELOPMENT 1-12
2.1 Overall Flow .. 1-12
2.2 Site Environment .. 1-15

2.2.1 Connection to S10VE by specifying site ... 1-16
2.3 Area Management and Area Divisions in the Main Memory .. 1-17
2.4 Area Allocation for Tasks .. 1-22
2.5 Area Allocation for IRSUBs .. 1-23
2.6 Loading Programs and Creating Tasks .. 1-24
2.7 Indirect Link Resident Subprograms ... 1-24
2.8 Global (GLB) ... 1-24
2.9 Inter-PU Shared Memory (CM) ... 1-24
2.10 Value (VAL) .. 1-25
2.11 Indirect Link Global Data .. 1-25
2.12 Programming Guide for GLB, VAL, and IRSUB ... 1-25
2.13 Constraints on CPMS Program Creation ... 1-34

CAHAPTER 3 INSTALLATION AND EXECUTION ENVIRONMENT 1-40
3.1 Installation .. 1-40
3.2 Prerequisite Software Products .. 1-40
3.3 Notes on Installation .. 1-40

3.3.1 Notes on installing RPDP .. 1-40
3.3.2 Notes on installing the SHC compiler ... 1-40

3.4 RPDP Execution Environment ... 1-41
3.5 Registering an RPDP User Account .. 1-42

3.5.1 Registering a new account ... 1-42
3.5.2 Adding RPDPusers as a group to which an existing account belongs 1-43

CHAPTER 4 COMPILER .. 1-44
4.1 Details of C Compiler Options ... 1-44
4.2 Notes on Compiling ... 1-46

4.2.1 Compiling by using shc ... 1-46
4.3 shc Version Comparisons ... 1-48

4.3.1 Command line options ... 1-48
4.4 Data Generator ... 1-49

CHAPTER 5 PROGRAMMING COMMANDS ... 1-58
5.1 Notes on Programming Commands ... 1-58

iv

CHAPTER 6 ALLOCATOR ... 1-59
6.1 Allocating and Deallocating Split Areas .. 1-59

6.1.1 Necessity for split areas ... 1-59
6.1.2 Allocating split areas ... 1-60
6.1.3 Deallocating split areas .. 1-64
6.1.4 Assigning names to GLB and VAL ... 1-64
6.1.5 Allocating split areas for the CM ... 1-65

6.2 Value (VAL) Registration and Deletion .. 1-67

CHAPTER 7 LOADER .. 1-68
7.1 Linking and Loading .. 1-68
7.2 Loader Operating Environment ... 1-69
7.3 Library Search Paths .. 1-72
7.4 Notes on Linking and Loading ... 1-72

CHAPTER 8 BUILDER ... 1-73
8.1 Registering and Deleting Tasks ... 1-73

8.1.1 About tasks .. 1-73
8.1.2 Registering a task ... 1-73
8.1.3 Deleting a task ... 1-74

8.2 Registering and Deleting a Resident Subprogram ... 1-75
8.2.1 About indirect link subprograms (IRSUBs) .. 1-75
8.2.2 Registering an indirect link subprogram (IRSUB) .. 1-75
8.2.3 Deleting an indirect link subprogram (IRSUB) ... 1-76

8.3 Registering and Deleting a Built-in Subroutine ... 1-77
8.3.1 About built-in routines ... 1-77
8.3.2 Registering a built-in subroutine ... 1-78
8.3.3 Deleting a built-in subroutine .. 1-78

CHAPTER 9 MAP ... 1-79
9.1 Purpose of Displaying Allocator Management Table Information 1-79
9.2 svmap Command Options and Displayed Information .. 1-80

9.2.1 Map information that is output .. 1-80
9.2.2 Description of output map information ... 1-80
9.2.3 Map information output format ... 1-80

9.3 Logical Address Specification and Information Displayed by the svadm Command 1-82

CHAPTER 10 STARTUP AND PU CONTROL .. 1-83
10.1 Overview .. 1-83
10.2 Basic Concept of Startup and PU Control ... 1-84
10.3 Startup and PU Control Procedure ... 1-85
10.4 Startup and Stop Types .. 1-86
10.5 PU State Transitions ... 1-89

10.5.1 Startup procedure ... 1-90
10.5.2 PU control procedure ... 1-92

CHAPTER 11 svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT

FUNCTIONS .. 1-94
11.1 Overview .. 1-94

v

11.2 S10VE Status and Subcommand Availability ... 1-95
11.3 Basic Functions .. 1-97
11.4 Other Functions .. 1-101
11.5 Debug Support Commands .. 1-102

11.5.1 svelog command .. 1-102
11.5.2 svdhp command ... 1-103
11.5.3 svcpunow command .. 1-104
11.5.4 svtimex command .. 1-105

PART 2 COMMAND REFERENCE

CHAPTER 1 COMPILER .. 2-2
svdatagen ... 2-2

CHAPTER 2 PROGRAMMING COMMAND .. 2-4
makehce .. 2-4

CHAPTER 3 ALLOCATOR ... 2-16
svdfa .. 2-16
svdla .. 2-18
svdfs .. 2-19
svdls .. 2-22
svdfv .. 2-23
svdlv .. 2-24

CHAPTER 4 LOADER .. 2-25
svload .. 2-25
svdload .. 2-39
svcomp .. 2-40

CHAPTER 5 BUILDER ... 2-45
svctask ... 2-45
svdtask ... 2-47
svbuild ... 2-48
svdbuild ... 2-51
svirglb .. 2-54

CHAPTER 6 MANAGEMENT TOOL .. 2-56
svmap .. 2-56
svadm .. 2-59
svsitecntl .. 2-62

CHAPTER 7 STARTUP AND PU CONTROL ... 2-63
svrpl ... 2-63
svcpuctl ... 2-66

CHAPTER 8 svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT

COMMANDS .. 2-68
svdebug ... 2-68
qu ... 2-71

vi

ab ... 2-72
re .. 2-73
ta .. 2-74
su ... 2-77
rs .. 2-78
tm .. 2-79
ct .. 2-81
sht .. 2-82
md .. 2-83
sd ... 2-87
bs ... 2-90
bg ... 2-92
mcp .. 2-94
mmv .. 2-96
mf .. 2-98
el .. 2-100
ss .. 2-100
st .. 2-101
gt .. 2-102
br/stickybr ... 2-103
rb ... 2-109
rd ... 2-110
rr .. 2-113
go ... 2-114
ld .. 2-115
sv ... 2-123
cm .. 2-125
dr ... 2-127
ds ... 2-127
svdhp ... 2-128
svadm .. 2-128
si .. 2-129
sp ... 2-130
ps ... 2-132
pe ... 2-132
ver .. 2-133
lbr .. 2-134
lrb .. 2-135
lrd .. 2-136
lrr ... 2-137
lgo .. 2-138
s ... 2-138
help .. 2-139
q ... 2-141
! ... 2-141
svelog .. 2-142
svdhp ... 2-144
svcpunow .. 2-147
svtimex .. 2-148

vii

APPENDIXES

APPENDIX A NAMES USABLE IN PROGRAMS ... A-2

APPENDIX B LIBRARIES ... A-6

APPENDIX C SITE MANAGEMENT FILES ... A-9

APPENDIX D ERROR MESSAGES .. A-15

APPENDIX E NOTES ON USING RPDP ... A-47

APPENDIX F MAP DISPLAY FORMAT .. A-49

APPENDIX G DISPLAY FORMATS OF md AND sd OF svdebug

(ONLINE DEBUGGER) .. A-64

APPENDIX H LIST OF STACK SIZES FOR LIBRARY USE A-68

viii

FIGURES

Figure 1-1 Configuration of a System in which the Development Tool is Used 1-2
Figure 1-2 S10VE Hardware Configuration .. 1-7
Figure 1-3 HP and CP Site Environment and Hardware ... 1-8
Figure 1-4 Program Development Flowchart (from Site Construction to Program

Development) ... 1-13
Figure 1-5 S10VE Site Directory Structure ... 1-15
Figure 1-6 Logical Space Managed by the CPMS ... 1-17
Figure 1-7 S10VE Physical Memory Map ... 1-20
Figure 1-8 Arrangement of Tasks in Logical Space .. 1-22
Figure 1-9 Arrangement of Tasks in Logical Space (Multitasks) .. 1-22
Figure 1-10 IRSUB Arrangement in Logical Space .. 1-23
Figure 1-11 IRSUB Arrangement (Multi-entry) in Logical Space .. 1-23
Figure 1-12 Enabling or Disabling Writing ... 1-35
Figure 1-13 Comparison of Data Sizes .. 1-38
Figure 1-14 Sample Declaration of a Structure with Data Relocation Taken into Account 1-39
Figure 1-15 Example of Explicitly Declared Free Areas ... 1-39
Figure 1-16 Sample Declaration with Structure Size Taken into Account 1-39
Figure 1-17 defines.h ... 1-53
Figure 1-18 Sample Layout of Split Areas .. 1-61
Figure 1-19 Correspondence between CM Spaces in the Logical Space of the CPMS and

CM Spaces in the S10VE Main Memory ... 1-65
Figure 1-20 Creating a Load Module and Backup File ... 1-68
Figure 1-21 Load Module Structure ... 1-69
Figure 1-22 Loading Processing .. 1-70
Figure 1-23 S10VE Startup from a Development Machine ... 1-83
Figure 1-24 Concept of Overall Control of the S10VE ... 1-84
Figure 1-25 PU (OS Startup/Stop) State Transitions ... 1-89
Figure 2-1 Function Call Relationship and Stack Usage Amount ... 2-31
Figure 2-2 Format of the Display Produced by svcomp for a Program or Subprogram 2-43
Figure 2-3 Format of the Display Produced by svcomp for GLB or CM 2-44
Figure 2-4 Memory Access Range ... 2-86
Figure 2-5 Operation Procedure for Dynamic Display .. 2-86
Figure 2-6 Memory Access Range ... 2-95

ix

TABLES

Table 1-1 RPDP Commands .. 1-4
Table 1-2 Access Targets of the HP and the CP .. 1-8
Table 1-3 Programming Resources and their Availability at the CP Site 1-9
Table 1-4 RPDP Functions and Sites to be Processed ... 1-10
Table 1-5 RPDP Commands and Sites that are Processed ... 1-11
Table 1-6 Usage of the Logical Spaces .. 1-18
Table 1-7 Logical Space Addresses and Sizes ... 1-19
Table 1-8 Assigning Names to GLB and VAL .. 1-25
Table 1-9 Using GLB and VAL Names ... 1-26
Table 1-10 IRSUB Usage .. 1-32
Table 1-11 Prerequisite Software Products of RPDP .. 1-40
Table 1-12 Values Specified for the S10VE RPDP Execution Environment 1-41
Table 1-13 Environment Variables Required for shc Compiler Operation 1-45
Table 1-14 Floating-point Number Control Options ... 1-46
Table 1-15 Handling of Floating-point Numbers and Applicable Standard Libraries 1-46
Table 1-16 Comparison of Versions of the shc Command Line Options 1-48
Table 1-17 Initial Value Type Conversion Specifications ... 1-57
Table 1-18 Relationship between Split Area Use and GAREA Selection 1-60
Table 1-19 Conditions for Load Modules .. 1-69
Table 1-20 External Reference Combinations ... 1-71
Table 1-21 Combinations of Output Information and Selectable Output Formats 1-81
Table 1-22 Startup and Stop Types .. 1-86
Table 1-23 Download Options ... 1-90
Table 2-1 Binary Data Layout ... 2-3
Table 2-2 Combinations of svdfa Options ... 2-17
Table 2-3 Relationship between the Value Specified for svtype and the Alignment Count ... 2-20
Table 2-4 Combinations of svdfs Options ... 2-20
Table 2-5 Stack Size Calculation Examples .. 2-31
Table 2-6 Available Combinations of Output Resources and Output Sequence, and

Default Output Sequences ... 2-58
Table 2-7 Functions of svdebug ... 2-70
Table 2-8 Task States ... 2-75
Table 2-9 Status Bit Strings ... 2-75
Table 2-10 Explanation of the id, t, and cyct Parameters .. 2-80
Table 2-11 Relationships between Specifiable Values and Options .. 2-85
Table 2-12 Display Formats Depending on the Combination of Options 2-85
Table 2-13 Management States of Resources .. 2-119
Table A-1 Conditions for Specifying Library Names ... A-6
Table A-2 Error Messages .. A-16
Table A-3 Real-Time Source Management Status ... A-51

This Page Intentionally Left Blank

PART 1 GENERAL DESCRIPTION

1. OVERVIEW

1-2

CHAPTER 1 OVERVIEW

1.1 About RPDP

The Realtime Program Developing Package (RPDP/S10VE) is a tool that is used to develop
programs that are run on the real-time operating system (CPMS) of the S10VE. This tool
operates on a development machine on which the 64-bit version of Windows® 7 or
Windows® 10 is installed. The following figure shows the configuration of a system in which
the development tool is used.

• RPDP/S10VE: Realtime Program Developing Package for S10VE
• CPMS: Compact Process Monitor System

Figure 1-1 Configuration of a System in which the Development Tool is Used

When developing real-time programs that run on the CPMS, use the dedicated development
system RPDP/S10VE (hereinafter abbreviated to RPDP). Doing so enables programs running
on the CPMS to use attributes and functions provided for high-speed, real-time processing.

...

PCs
S10VE

LAN that provides TCP/IP support

Development machine

RPDP/S10VE

Windows® 7/10 (64-bit) PC

1. OVERVIEW

1-3

The following describes the RPDP program development sequence and supported functions:

Site construction Using the BASE SYSTEM/S10VE new project creation function,
select the Use C mode check box, and then construct a site
environment in which RPDP can be used.

Programming
(compilation, assembly, and library
generation)

On the development machine, a cross-compiler (*1) or librarian (*1)
is used to generate a program object or library that runs on the PCs.

Memory allocation (allocator) The RPDP allocator is used to allocate areas in the PCs memory that
are used to store tasks, subroutines (IRSUBs), and global data (GLB).

Loading, registration, and registration
display (loader, builder, and management
tool [map])

The loader is used to store tasks, subroutines (IRSUBs), and global
data (GLB) in the areas that are allocated by the allocator (loading).
The builder registers the loaded items as a task or subroutine
(IRSUB).
The contents of the registration can be confirmed by using a list that
is generated by the map function.

Downloading to controllers (startup, PU
control) (*2)

The startup function is used to download OS and backup files from
the site environment to the memory of the PCs for startup purposes.
In addition, the PU control function is used to control the operation of
the PCs (CPU RUN/STOP) from the development machine.

Debugging (debugger) The debugger is used to debug task and IRSUB operations. The
debugger is capable of controlling task operations. Another function
individually loads the tasks, IRSUBs, and global data from backup
files into the memory of the PCs.

(*1) Use the “Renesas Microcomputer Development Environment System SuperH RISC engine C/C++ Compiler

Package Ver. 9.04 Release 00” as a cross-compiler, assembler, and librarian.
(*2) The PCs subject to downloading are the S10VE PCs.

1. OVERVIEW

1-4

1.2 Commands
Table 1-1 lists the RPDP commands.

Table 1-1 RPDP Commands (1/3)

Classification
Command

name
Function

Reference
page

Compiler svdatagen Creates a loadable binary file of initial-value data. 2-2

Programming
commands

optlnk Librarian (part of the compiler package) (*)

optlnk Linker (part of the compiler package) (*)

makehce make command 2-4

Allocator

svdfa Allocates split areas and generates backup files. 2-16

svdla Releases split areas and deletes backup files. 2-18

svdfs Allocates secondary partition areas. 2-19

svdls Releases secondary partition areas. 2-22

svdfv Registers a VAL. 2-23

svdlv Releases a VAL. 2-24

Loader

svload
Stores a resource in a backup file and registers it as management
information.

2-25

svdload Deletes a resource from the management information. 2-39

svcomp Provides a comparison with a registered resource. 2-40

Builder

svctask Creates a task. 2-45

svdtask Deletes a task. 2-47

svbuild
Creates an indirect link subprogram. 2-48

Creates a built-in subroutine. 2-49

svdbuild
Deletes an indirect link subprogram. 2-51

Deletes a built-in subroutine. 2-52

svirglb Registers or deletes an IRGLB. 2-54

(*) See the manual for the “Renesas Microcomputer Development Environment System SuperH RISC engine C/C++
Compiler Package Ver. 9.04 Release 00”.

1. OVERVIEW

1-5

Table 1-1 RPDP Commands (2/3)

Classification
Command

name
Function

Reference
page

Online
debugger

svdebug

Starting or
stopping tasks

qu Requests the start of a task. 2-71

ab Prohibits task startup. 2-72

re Cancels prohibition of task startup. 2-73

ta Displays the status of a task. 2-74

su Suppresses task execution. 2-77

rs Cancels suppression of task execution. 2-78

tm Starts a task cyclically. 2-79

ct Cancels cyclical task startup. 2-81

sht Displays cyclical task startup. 2-82

si Initializes the stack. 2-129

sp Displays the amount of the stack in use. 2-130

Memory
printing or
patching

md
Displays or changes the contents of
memory according to a specified address.

2-83

sd
Displays or changes the contents of
memory according to a specified name.

2-87

bs Sets data in a specified bit position. 2-90

bg
Displays the data that exists in a
specified bit position.

2-92

mcp Copies the contents of memory. 2-94

mmv Moves the contents of memory. 2-96

mf Sets a pattern value in memory. 2-98

Breakpoints

br Sets or displays breakpoints. 2-103

stickybr
Sets or displays breakpoints that are not
deleted by a reset start.

2-103

rb Deletes breakpoints. 2-109

rd Displays registers. 2-110

rr Changes the contents of registers. 2-113

go Resumes execution from a breakpoint. 2-114

System error
display

el Displays the error log. 2-100

ss Displays the system status. 2-100

Current time
setting or
display

st Sets the current time. 2-101

gt Displays the current time. 2-102

Uploading/dow
nloading/comp
aring

ld Downloads resources individually. 2-115

sv Backs up resources individually. 2-123

cm
Compares the contents of a backup file
and the S10VE memory.

2-125

Enabling or
disabling the
DHP recording
function

dr Enables the DHP recording function. 2-127

ds Disables the DHP recording function. 2-127

Ladder
debugging
functions

lbr Sets or displays breakpoints. 2-134

lrb Deletes breakpoints. 2-135

lrd Displays registers. 2-136

lrr Rewrites registers. 2-137

lgo Resumes execution from a breakpoint. 2-138

s Executes steps. 2-138

1. OVERVIEW

1-6

Table 1-1 RPDP Commands (3/3)

Category
Command

name
Function

Reference
page

Online debugger svdebug Other

svdhp Displays the DHP. 2-128

svadm
Displays the resource name for an
address.

2-128

ps Starts displaying a debug statement. 2-132

pe Finishes displaying a debug statement. 2-132

ver Displays the version of the CPMS. 2-133

help Displays the subcommands. 2-139

q Terminates the debugger. 2-141

!
Runs a command on the development
machine at the time that svdebug is run.

2-141

Management tools

svmap Displays map information. 2-56

svadm Displays information corresponding to an address. 2-59

svsitecntl Controls and displays the site status. 2-62

Startup/PU control
svrpl Performs remote loading. 2-63

svcpuctl Controls remote statuses. 2-66

Activity management
svcpunow Displays the CPU load (ratio). 2-147

svtimex Displays the task activity ratio. 2-148

Display of error logs
and DHP traces

svelog Outputs error log information. 2-142

svdhp Displays DHP trace information. 2-128

1. OVERVIEW

1-7

1.3 Using the Different Processors (CP and HP)
The SH4A dual processor is used as the CPU in the S10VE. Core 0 of the dual processor is
used as the CP (communication processor), and Core 1 is used as the HP (high-speed
processor). This section describes the roles of and programming methods for these processors.

1.3.1 Configuration and roles

The SH4A dual processor is used as the CPU in the S10VE. Core 0 of the dual processor is
used as the CP (communication processor) for control and communications, and Core 1 is
used as the HP (high-speed processor) for control. These two cores are therefore used for
control and communications processing and for control processing, respectively. Core 0 (the
CP) controls communications to distribute load in order to improve the performance of the
control programs, such as PI/O accesses, of Core 1 (the HP).

Figure 1-2 S10VE Hardware Configuration

The CP runs communication-processing programs and control programs. Some examples of
communication-processing programs include the following: programs that perform
communications by using a network upon a request from the HP, communication-processing
system tasks provided by subsystems such as RCTLNET, servers for connecting to tools,
and system tasks for running the Ethernet communication instructions of ladder programs.
Control programs regularly access PI/O units through the memory interface to perform
calculations and other operations.

PS CPU
RI/O
-IF S10VE

CPU

Slot number 0 1 2 3 4 5 6

CP (for control and communications) HP (for control)

CP HP

NAND flash LSI

PCI bus SDRAM ROM

Ethernet

Memory bus

R700 system bus

FL.NET ...

S10 system bus

OD.RING ...

MRAM

HSC1000 bus

Dual-SH4A SH2
(SP)

O
D
R
I
N
G

F
L
N
E
T

DSU bus

1. OVERVIEW

1-8

Control programs mainly run in the HP. Control programs regularly access PI/O units by
using ladder programs and HI-FLOW programs, to perform calculations and other
operations. Control programs on the HP side are capable of data transmission and reception
by using the Ethernet communication instructions of ladder programs.

Figure 1-3 HP and CP Site Environment and Hardware

The following table shows the access targets of the CP and the HP.
Communication tasks run on the CP, and high-speed sequence tasks run on the HP. Tasks on
the HP cannot communicate via the built-in Ethernet by using the I/O interface. Similarly,
tasks on the CP cannot run ladder programs. The usable networks and I/O interfaces
therefore differ depending on the core in which the task operations are performed.
The following table shows the classification of the access targets of the CP and HP
according to the use of the CP and HP cores.

Table 1-2 Access Targets of the HP and the CP

Access target CP HP Notes

NAND flash Accessible Inaccessible
Built-in Ethernet (socket) Accessible Inaccessible Socket: Error return
HSC-1000 Accessible Accessible
HSC-2100 Accessible Accessible
S10 module (S10 bus space) Accessible Accessible

Core 1
for HP

Logical space
for HP

Physical memory

(shared by HP, CP)

(Control programs [ladder, HI-FLOW, etc.]

are placed here.)

HP site environment (for subsystems only) CP site environment (for users only)

(Mainly control programs such as
ladder programs and HI-FLOW
programs run.)

HP physical memory CP physical memory

Core 0
for CP

Logical space
for CP

(Communication-processing tasks

[RCTLNET, etc.] are placed here.)

(Mainly RCTLNET, servers for
connecting to tools, and tasks to
run ladder Ethernet instructions
run.)

1. OVERVIEW

1-9

1.3.2 Programming environment
The RPDP of the S10VE allocates site names for the cores (the CP and the HP) of PCs to
manage programming resources (including tasks, subprograms, and global data).
When creating a new BASE SYSTEM/S10VE project, selecting the Use C mode check box
creates CP and HP sites with PCs numbers and unique names for each core.
In the RPDP, programming resources are provided for the CP site and the HP site. The CP
site is used to run communication-processing system tasks provided by subsystems (such as
RCTLNET), servers for connecting to tools, and system tasks to run the Ethernet
communication instructions of ladder programs. The HP site is used to run control programs
by regularly accessing PI/O units by using ladder programs and HI-FLOW programs, as
well as to perform calculations, so do not register user tasks for the HP site.
The following table shows programming resources and their availability at the CP site.

Table 1-3 Programming Resources and their Availability at the CP Site

Programming resource
CP site

(for communication tasks)

Task
Available
(User task: TN = 1 to 224)

IRSUB
Available
(Quantity: 8191, but with 256 reserved by the OS)

Built-in subroutine
Available
(point(14)* entry(4), but with entry1 reserved by the OS)

GLB
(including definition in the CM)

Available
(Quantity: 8192, but with 256 reserved by OS)

VAL
Available
(Quantity: 4096, but with 10 reserved by the OS)

(*) When initial values are registered in (loaded to) the GLB (with initial values) of the CM,
register initial values at the CP site. Because the CM is a memory space to be shared by
both the CP and HP sites, the site where initial values can be registered is limited to the CP
site.

1. OVERVIEW

1-10

1.3.3 RPDP functions and specifications of the CP and HP sites
Table 1-4 shows the relationship between the sites to be processed and the RPDP functions
that process sites.

Table 1-4 RPDP Functions and Sites to be Processed

RPDP function Site to be processed

Compiler The CP site and HP site do not need to be specified.
Programming command The CP site and HP site do not need to be specified.
Allocator, loader, builder, and
management tools (such as svmap)

The provided functions (including program registration and area
allocation) are run individually for each site by specifying either the
CP or HP site.

Online debugger The debug function is run individually for each site by specifying
either the CP or HP site.

Startup and PU control These are not run individually for the CP and HP sites, but rather are
run simultaneously for these sites. However, the CP site is specified
as the target of the operation.

Activity management This is run individually for each site by specifying the CP or HP site.
Maintenance commands These are run individually for each site by specifying the CP or HP

site.

1. OVERVIEW

1-11

Table 1-5 shows the sites that are processed for each RPDP command.

Table 1-5 RPDP Commands and Sites that are Processed

RPDP function
Command

name

Site to be processed
Processing CP and HP sites

individually
Processing CP and HP sites

simultaneously
Compiler svdatagen Applicable
Programming command optlnk No site specified No site specified

makehce No site specified No site specified
• Allocator
• Loader
• Builder

svdfa Applicable
svdla Applicable
svdfs Applicable
svdls Applicable
svdfv Applicable
svdlv Applicable
svload Applicable
svdload Applicable
svcomp Applicable
svctask Applicable
svdtask Applicable
svbuild Applicable
svdbuild Applicable
svirglb Applicable

Online debugger svdebug Applicable
Management tools svmap Applicable

svadm Applicable
svsitecntl Applicable

• Startup
• PU control

svrpl Applicable
svcpuctl Applicable

Activity management svcpunow Applicable
svtimex Applicable

Maintenance commands svdhp Applicable
svelog Applicable

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-12

CHAPTER 2 PROCEDURES FOR PROGRAM DEVELOPMENT

2.1 Overall Flow

Figure 1-4 shows the overall flow of the procedures for program development.

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-13

Fi

gu
re

 1
-4

P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

ch
ar

t (
fr

om
 S

it
e

C
on

st
ru

ct
io

n
to

 P
ro

gr
am

 D
ev

el
op

m
en

t)
 (

1/
2)

Se
le

ct
 th

e
U

se
 C

 m
od

e
ch

ec
kb

ox
 w

he
n

cr
ea

tin
g

a
ne

w
 p

ro
je

ct
 o

f
th

e
ba

si
c

sy
st

em
 to

co
ns

tr
uc

t t
he

 R
PD

P
 s

ite
.

S
it

e
co

ns
tr

uc
ti

on

A
pp

li
ca

ti
on

 d
ev

el
op

m
en

t

s
v
d
e
b
u
g

: D
eb

ug
ge

r

Y
es

T
as

k

Is
 th

e
st

ac
k

su
ff

ic
ie

nt
?

Is
 d

at
a

st
or

ed
 w

it
hi

n
a

sp
li

t a
re

a?

N
o

Y
es

In
di

re
ct

 li
nk

 s
ub

pr
og

ra
m

 o
r

bu
il

t-
in

su
bp

ro
gr

am

Is
 d

at
a

st
or

ed
 w

it
hi

n
a

sp
li

t a
re

a?

N
o

N
o

Y
es

G
lo

ba
l d

at
a,

 C
M

N
o

N
o

Y
es

Y
es

In
di

re
ct

 li
nk

 g
lo

ba
l d

at
a,

 C
M

Y
es

N
o

N
o

Y
es

s
v
d
b
u
i
l
d

: S
ub

pr
og

ra
m

 d
el

et
io

n

s
v
d
l
o
a
d

: S
ub

pr
og

ra
m

 d
el

et
io

n

s
v
d
l
a

: S
pl

it
ar

ea
 d

ea
llo

ca
tio

n

s
v
d
f
a

: S
pl

it
ar

ea
 a

llo
ca

tio
n

s
v
b
u
i
l
d

: S
ub

pr
og

ra
m

 r
eg

is
tr

at
io

n

C
P/

H
P

sy
st

em
 p

ro
ce

ss
in

g

s
h
c

: C
om

pi
la

tio
n

T
ex

t e
di

to
r:

 S
ou

rc
e

fi
le

 c
re

at
io

n

s
v
d
t
a
s
k

: T
as

k
de

le
ti

on

s
v
d
l
o
a
d

: P
ro

gr
am

 d
el

et
io

n

s
v
l
o
a
d

: P
ro

gr
am

 r
eg

is
tr

at
io

n

s
v
d
l
a

: S
pl

it
ar

ea
 d

ea
llo

ca
tio

n

s
v
d
f
a

: S
pl

it
ar

ea
 a

llo
ca

tio
n

s
v
c
t
a
s
k

: T
as

k
re

gi
st

ra
tio

n

s
v
r
p
l

: C
on

tr
ol

le
r

st
ar

tu
p

s
v
l
o
a
d

: S
ub

pr
og

ra
m

 r
eg

is
tr

at
io

n
Is

 d
at

a
st

or
ed

 w
it

hi
n

a
se

co
nd

ar
y

pa
rt

it
io

n
ar

ea
?

Is
 d

at
a

st
or

ed
 w

it
hi

n
a

sp
li

t a
re

a?

s
v
d
f
s

: S
ec

on
da

ry
 p

ar
ti

tio
n

ar
ea

 a
llo

ca
tio

n

s
v
l
o
a
d

: D
at

a
re

gi
st

ra
tio

n

s
v
d
l
s

: S
ec

on
da

ry
 p

ar
ti

tio
n

ar
ea

 d
ea

llo
ca

ti
on

s
v
d
f
s

: S
ec

on
da

ry
 p

ar
ti

tio
n

ar
ea

 a
llo

ca
tio

n

s
v
d
f
a

: S
pl

it
ar

ea
 a

llo
ca

tio
n

s
v
d
f
a

: S
pl

it
ar

ea
 d

ea
llo

ca
tio

n

Is
 d

at
a

st
or

ed
 w

it
hi

n
a

se
co

nd
ar

y
pa

rt
it

io
n

ar
ea

?

s
v
l
o
a
d

: D
at

a
re

gi
st

ra
tio

n

s
v
d
l
a

: S
pl

it
ar

ea
 d

ea
llo

ca
tio

n

s
v
d
f
a

: S
pl

it
ar

ea
 a

llo
ca

tio
n

s
v
d
f
s

: S
ec

on
da

ry
 p

ar
ti

tio
n

ar
ea

 a
llo

ca
tio

n
an

d

re
gi

st
ra

ti
on

 o
f

in
di

re
ct

 a
cc

es
s

gl
ob

al
 d

at
a

ta
bl

e

s
v
d
f
s

: S
ec

on
da

ry
 p

ar
ti

tio
n

ar
ea

 a
llo

ca
tio

n
an

d

re
gi

st
ra

ti
on

 o
f

in
di

re
ct

 a
cc

es
s

gl
ob

al
 d

at
a

ta
bl

e

N
ot

es
:

T
he

 C
M

 s
pa

ce
 is

 s
ha

re
d

by
 th

e
C

P
an

d
H

P
in

 th
e

C
PU

.

T
he

re
fo

re
, a

ll
oc

at
e

sp
li

t a
re

as
 a

nd
 s

ec
on

da
ry

 p
ar

ti
ti

on
 a

re
as

 in
 s

ha
re

d
si

te
s

eq
ua

ll
y.

S
et

ti
ng

 o
f

en
vi

ro
nm

en
t v

ar
ia

bl
e
R
S
S
I
T
E

(S
et

ti
ng

 o
f

si
te

s
to

 b
e

ha
nd

le
d)

s
v
d
f
a

: S
pl

it
ar

ea
 a

llo
ca

tio
n

s
v
d
l
s

: S
ec

on
da

ry
 p

ar
ti

tio
n

ar
ea

 d
ea

llo
ca

ti
on

Is
 d

at
a

st
or

ed
 w

it
hi

n
a

se
co

nd
ar

y
pa

rt
it

io
n

ar
ea

?

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-14

Fi

gu
re

 1
-4

P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

ch
ar

t (
fr

om
 S

it
e

C
on

st
ru

ct
io

n
to

 P
ro

gr
am

 D
ev

el
op

m
en

t)
 (

2/
2)

s
v
d
e
b
u
g

: D
eb

ug
ge

r
te

rm
in

at
io

n

s
v
d
l
a

: S
pl

it
ar

ea
 d

el
et

io
n

s
v
d
f
a

: S
pl

it
ar

ea
 r

ea
llo

ca
ti

on

s
v
d
l
s

: S
ec

on
da

ry
 p

ar
ti

tio
n

ar
ea

 d
el

et
io

n

s
v
d
f
s

: S
ec

on
da

ry
 p

ar
ti

tio
n

ar
ea

 r
ea

llo
ca

ti
on

or

s
v
d
l
a

: S
pl

it
ar

ea
 d

el
et

io
n

s
v
d
f
a

: S
pl

it
ar

ea
 r

ea
llo

ca
ti

on

So
ur

ce
 f

ile
 c

or
re

ct
io

n

s
h
c

: C
om

pi
la

tio
n

s
v
l
o
a
d

: D
at

a
re

gi
st

ra
tio

n

s
v
d
e
b
u
g

: D
eb

ug
ge

r
st

ar
tu

p

l
d

 s
ub

co
m

m
an

d:
 D

at
a

su
bc

om
m

an
d

T
as

k

In
di

re
ct

 li
nk

 s
ub

pr
og

ra
m

 o
r

bu
ilt

-i
n

su
bp

ro
gr

am

(G
o

ba
ck

 w
he

n
th

e
ar

ea
 is

 in
su

ff
ic

ie
nt

.)

(S
ta

rt
 o

f
su

br
ou

ti
ne

-c
al

li
ng

 ta
sk

)

(G
o

ba
ck

 w
he

n
th

e
ar

ea
 is

 in
su

ff
ic

ie
nt

.)

(G
o

ba
ck

 w
he

n
th

e
ar

ea
 is

 in
su

ff
ic

ie
nt

.)

(S
ta

rt
 o

f
da

ta
 a

cc
es

s
ta

sk
 o

r
su

br
ou

tin
e)

N
ot

 r
eq

ui
re

d

N
ot

 r
eq

ui
re

d

R
eq

ui
re

d

R
eq

ui
re

d

R
eq

ui
re

d

N
ot

 r
eq

ui
re

d

s
v
d
e
b
u
g

: D
eb

ug
ge

r
st

ar
tu

p

r
e

s
u
b
c
o
m
m
a
n
d

: T
as

k
re

le
as

e

q
u

s
u
b
c
o
m
m
a
n
d

: T
as

k
qu

eu
in

g

C
he

ck
 o

f
ex

ec
ut

io
n

re
su

lts
 w

ith
 m

em
or

y

du
m

p
or

 o
th

er
 d

at
a

So
ur

ce
 f

ile
 c

or
re

ct
io

n

s
h
c

: C
om

pi
la

tio
n

s
v
d
t
a
s
k

: T
as

k
de

le
ti

on

s
v
d
l
o
a
d

: P
ro

gr
am

 d
el

et
io

n

s
v
l
o
a
d

: P
ro

gr
am

 r
eg

is
tr

at
io

n

s
v
c
t
a
s
k

: T
as

k
re

gi
st

ra
tio

n

s
v
d
e
b
u
g

: D
eb

ug
ge

r
st

ar
tu

p

a
b

 s
ub

co
m

m
an

d:
 T

as
k

ab
or

t

l
d

 s
ub

co
m

m
an

d:
 T

as
k

do
w

nl
oa

d

r
e

 s
ub

co
m

m
an

d:
 T

as
k

rl
ea

s

q
u

 s
ub

co
m

m
an

d:
 T

as
k

qu
eu

in
g

D
oe

s
da

ta
 r

eq
ui

re
 c

or
re

ct
io

n?

D
oe

s
a

su
bp

ro
gr

am
 r

eq
ui

re
 c

or
re

ct
io

n?

D
oe

s
a

ta
sk

 r
eq

ui
re

 c
or

re
ct

io
n?

G
lo

ba
l d

at
a

an
d

C
M

(i
nc

lu
di

ng
 in

di
re

ct
-a

cc
es

s
gl

ob
al

 d
at

a
an

d
C

M
)

So
ur

ce
 f

ile
 c

or
re

ct
io

n

s
h
c

: C
om

pi
la

tio
n

s
v
d
b
u
i
l
d

: S
ub

pr
og

ra
m

 d
el

et
io

n

s
v
d
l
o
a
d

: S
ub

pr
og

ra
m

 d
el

et
io

n

s
v
l
o
a
d

: S
ub

pr
og

ra
m

 r
eg

is
tr

at
io

n

s
v
b
u
i
l
d

: S
ub

pr
og

ra
m

 r
eg

is
tr

at
io

n

s
v
d
e
b
u
g

: D
eb

ug
ge

r
st

ar
tu

p

l
d

 s
ub

co
m

m
an

d:
 S

ub
pr

og
ra

m
 d

ow
nl

oa
d

s
v
r
p
l

: C
on

tr
ol

le
r

st
ar

tu
p

s
v
d
l
a

: S
pl

it
ar

ea
 d

el
et

io
n

s
v
d
f
a

: S
pl

it
ar

ea
 r

ea
llo

ca
ti

on

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-15

2.2 Site Environment
The RPDP allocates site names to each CPU core of the S10VE (CP, the communication
processor, and HP, the high-speed processor) and manages tasks that run on the CPMS,
subprograms, and global data for each core.
Site names are unique to each core. Site names are determined by the BASE SYSTEM/S10VE
when the Use C mode project is created in the BASE SYSTEM/S10VE. Site names are
created as PCs-numbercp name or PCs-numberhp name for each PCs number of the project.
The BASE SYSTEM/S10VE creates a site name directory (called the site directory) for each
site, and then copies the base site to the site directory. Management files owned by each site
are placed into sites. Management files include the backup files, which contain the initial-
value data files of the S10VE memory, and the files that manage tasks, subroutines, and global
data that are stored in the backup files.
The site directory is created in a fixed directory for each PCs number (C:\S10VE\PCs-
number\PCs-number_unit\PCs-numbercp) for each PCs number.
The RPDP also manages a CPU site, which refers collectively to the CP and HP sites. The
CPU name is the same as the site name allocated to the CP.
When the CP and HP must be operated simultaneously, such as during remote loading, specify
the CPU name.

Figure 1-5 S10VE Site Directory Structure

RI/O
-IF

Management files for each site

For CP

S10VE

C:\S10VE\PCs-number

PCs-numbercp

For HP

PCs-numberhp

PCs-number_unit

PCs-numbercp CPU directory

Site directory

Management files for each CPU

Development machine

CPU

CP HP
PS

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-16

2.2.1 Connection to S10VE by specifying site
When establishing a connection to the S10VE for remote loading or error log collection by
specifying the site created in the BASE SYSTEM/S10VE, open the applicable project of the
PCs number in the BASE SYSTEM/S10VE, and then change the PCs to be connected.
Connect the PCs to the S10VE that has the IP address for which the connected PCs were
changed.
After the connected PCs have been changed, the project does not need to be opened, but it
must be reconnected by changing the connected PCs when connecting it to another S10VE.
Because RPDP does not support connections to the ET.NET module, always connect to the
CPU module.

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-17

2.3 Area Management and Area Divisions in the Main Memory
On the development machine, RPDP performs area management for the main memory of the
S10VE. The purpose of area management is to allocate programs, subprograms, and data in
the main memory in an efficient manner, without duplicate allocations. The memory space
subject to area management by RPDP is the logical space managed by CPMS on the physical
memory and S10VE. The physical memory is mapped from the beginning of the logical space
by using the GAREA-defined size for each use. (Each CPMS manages the logical space for
the CP and HP of the CPU.)
Figure 1-6 shows the logical space managed by the CPMS. Table 1-6 shows the usage of the
logical space.

Logical space

Figure 1-6 Logical Space Managed by the CPMS

0x
00

00
00

00

0x
20

00
00

00

0x
28

00
00

00

0x
30

00
00

00

0x
40

00
00

00

0x
50

00
00

00

0x
60

00
00

00

0x
70

00
00

00

0x
75

00
00

00

0x
77

00
00

00

0x
7C

00
00

00

Bus
memory
space, etc.

$MAP $CPMS $TASK $GLBR $GLBRW $IRSUB $CM $USRFUNC
Kernel
space

S10
space

System bus
space

(*) (*) (*) (*) (*)

(*) The part of the logical space of the global area that can be used is the size of
the allocated physical area starting from the beginning.

: This indicates a range within which the user can allocate a split area
for real-time resource registration.

Network devices and I/O devices are accessible through
the bus.

0x
00

01
00

00

0x
02

00
00

00

0x
00

00
00

00

Reserved

0x
02

50
00

00

0x
18

00
00

00

0x
03

00
00

00

0x
03

00
00

00

M
R

A
M

0x
04

A
00

00
0

O
P

T
P

R
M

(C

P
 only)

0x
04

00
00

00

$LADDER

0x
80

00
00

00

$HIFLOW

0x
78

00
00

00

0x
7B

00
00

00

0x
0c

00
00

00

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-18

Table 1-6 Usage of the Logical Spaces

Global area name of
the logical space

Use

$TASK This area stores tasks (programs).
$GLBR This area stores read-only GLB.
$GLBRW This area stores read/write GLB.
$IRSUB This area stores subprograms.
$CM This space can be shared by PUs.
$LADDER This area stores ladder programs. (This area is available only in the HP.)

$USRFUNC
This area stores the user-calculation function of ladder programs. (This area is
available only in the HP.)

$HIFLOW This area stores the HI-FLOW program. (This area is available only in the HP.)

$MAP

This stores the following tables, which are managed by RPDP:
• IRSUB indirect link table (IRSUBT)
• Task control block (TCB)
• IRGLB indirect link table (IRGLBT)
• Built-in subroutine table (USLCB)

$CPMS This space is used by the CPMS.

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-19

Table 1-7 shows the addresses and sizes of the logical spaces managed by the CPMS that are
shown in Figure 1-6.

Table 1-7 Logical Space Addresses and Sizes

S10VE

Global area name of
the logical space (use)

Address Size
Area name of the SH4
virtual address space

Reserved 0x00000000-0x0000ffff 64 KB P0 area (U0 area)
S10 space 0x00010000-0x01ffffff 32 MB - 64 KB
Reserved 0x02000000-0x02ffffff 16 MB
MRAM 0x03000000-0x032fffff 3 MB
Reserved 0x03300000-0x03ffffff 13 MB
OPTPRM 0x04000000-0x049fffff 10 MB
Reserved 0x04a00000-0x0bffffff 118 MB
Bus memory space 0x0c000000-0x17ffffff 192 MB
Reserved 0x18000000-0x1fffffff 128 MB
$MAP 0x20000000-0x27ffffff 128 MB (1.5 MB)
$CPMS 0x28000000-0x2fffffff 128 MB
$TASK 0x30000000-0x3fffffff 256 MB (8 MB)
$GLBR 0x40000000-0x4fffffff 256 MB (4 MB)
$GLBRW 0x50000000-0x5fffffff 256 MB (4 MB)
$IRSUB 0x60000000-0x6fffffff 256 MB (4 MB)
$CM 0x70000000-0x74ffffff 80 MB (2 MB)
Reserved 0x77000000-0x77fffff 16 MB
$LADDER 0x78000000-0x7affffff 48 MB (8 MB)
$USRFUNC 0x7b000000-0x7bffffff 16 MB (2 MB)
$HIFLOW 0x7c000000-0x7fffffff 64 MB (8 MB)

Kernel space
0x80000000-0x9fffffff 512 MB P1 area
0xa0000000-0xbfffffff 512 MB P2 area

Reserved
0xc0000000-0xdfffffff 512 MB P3 area
0xe0000000-0xffffffff 512 MB P4 area

The value in parentheses given for the size of each logical space is the size for which the physical
memory is allocated.

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-20

Figure 1-7 shows the details of the physical memory map.

Figure 1-7 S10VE Physical Memory Map

SPM: This is the CPMS edition data.
HKP: This is a space used to run the Hardware KROM Program that is copied from the ROM.
CPMS: The CPMS is the main program of the OS. The CPMS is located and runs on both the

HP (the high-speed processor) and the CP (communication processor) of the CPU.
The 128 KB space at the end of the map is the memory space shared by the CPMS for
the HP and CPMS for the CP.

OPTPRM: Parameters for optional modules are set in this area.
CM: The CM is memory that is shared between processors that can be accessed from the CM

space in the logical spaces of both processors (CP and HP) of the CPU.
F.U.: This is reserved for future use.
LADDER: Ladder programs are downloaded to this area.
USRFUNC: The user calculation function of ladder programs is downloaded to this area.
HIFLOW: HI-FLOW programs are downloaded to this area.
Area for tasks, subprograms, and GLB:
 Tasks, subprograms, and GLB data are downloaded to this area.
 Map information, TCB, IRSUBT, IRGLBT, and USLCB are also downloaded to this area.
OS work for HP, OS work for CP, and network buffer:
 These are buffer areas used by the OS, consisting mainly of a DHP area and network buffer.
System reserved area:
 This area is reserved by the hardware.

0x
04

00
00

00

0x
04

08
00

00

0x
04

1f
00

00

0x
04

F8
00

00

SPM,
HKP

User space for CP

512
KB

0x
04

36
00

00

0x
04

38
00

00

0x
04

D
80

00
0

0x
09

35
C

00
0

0x
09

28
00

00

0x
07

D
00

00
0

User space for HP

Tasks, subprograms,
and GLB for HP

Tasks, subprograms,
and GLB for CP

1472
KB

1472
KB

128
KB

CPMS
for HP

CPMS
for CP

CM F.U.
OS

work
for HP

OS
work

for CP

Free

memory
Network

buffer

Area
reserved

for system
(16 MB +
256 KB)

OS

0x
06

78
00

00

LAD
DER

0x
06

78
00

00

HIFL
OW

0x
05

F8
00

00

USRF
UNC

0x
05

58
00

00

OPT
PRM

0x
0B

E
FC

00
0

0x
0C

00
00

00
0

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-21

 Details of the task, subprogram, and GLB area
The details for the task, subprogram, and GLB area are as follows:

Task, subprogram, and GLB area

$MAP $TASK $GLBR $GLBRW $IRSUB

$MAP: This area is for storing management information in the S10VE memory.
$TASK: This area is for storing tasks (programs).
$GLBR: This area is for storing read-only GLB.
$GLBRW: This area is for storing read/write GLB.
$IRSUB: This area is for storing subprograms.

When generating a task or subprogram that runs on the CPMS or data to be used by the task
or subprogram, first allocate a split area (area) within a global area (GAREA) for task,
subprogram, and data storage. For GLB (global data) and CM, further divide the split area
into secondary partition areas (sarea). Tasks and subprograms specify secondary partition
area names to access data.
(1) Split area

Split areas (area) are allocated by using svdfa and deallocated by using svdla. Multiple
split areas can be allocated in a global area (GAREA).
When a split area is allocated, a backup file of sufficient size for the allocated area is
generated.

(2) Secondary partition area
Multiple resources can be arranged within a split area allocated by svdfa. Tasks and
subprograms are placed in split areas by using svload and deallocated by using
svdload. A GLB and CM secondary partition area (sarea) is allocated by using svdfs
and deallocated by using svdls.
To deallocate a split area (area), use svdla.

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-22

2.4 Area Allocation for Tasks
All tasks that run under the CPMS are allocated in a single logical space. The tasks are stored
in a split area allocated to $TASK. Multiple tasks can be stored in a single split area.
Place text on a page boundary (4 KB boundary), and data/bss and stack on an 8-byte
boundary.
In addition, ensure that text/data and stack/bss for the same task and the OS work are located
on different pages.

Figure 1-8 Arrangement of Tasks in Logical Space

 Stack arrangement for a multitask
For multitasks, place a stack and bss on different pages.
The OS work and stack are to be allocated as needed for all multitasks at the time of
loading. The portion to be used is specified by the user at the time that the task is generated.
(In the figure below, task 1 and task 2 are multitasks.)

Figure 1-9 Arrangement of Tasks in Logical Space (Multitasks)

A multitask is a set of n tasks that are generated for one program to reduce the memory
required for the program. Multitasks are implemented by sharing the text, data, and bss
parts of the loaded programs, and by placing the stack parts in a different area for each task.
Note that when a task within a multitask writes data to the bss part, the written data is
applied to the other tasks within the multitask. As a result, tasks that operate with the
expectation of the initial bss state might not operate correctly. For this reason, do not write
data to the bss part of a multitask.

area

$TASK

Task 1 area

Page boundary Page boundary Page boundary

8-byte boundary 8-byte boundary

text data stack bss
OS work

(4 KB)
text stack bss data

OS work

(4 KB)

Task 2 area

Task 1 area Task 2 area Common area for tasks 1 and 2 Common area for tasks 1 and 2

Place a stack, bss and OS work on different pages.

text data
stack

(for task 1)
bss

OS work
(for task 1)

OS work
(for task 2)

stack
(for task 2)

...

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-23

2.5 Area Allocation for IRSUBs
All IRSUBs running on the CPMS are placed in a single logical space. The IRSUBs are stored
in a split area allocated to $IRSUB. Multiple IRSUBs can be stored in a single split area.
Place text on a 32-byte boundary and data on an 8-byte boundary.

Figure 1-10 IRSUB Arrangement in Logical Space

 Multi-entry arrangement
The same text/data arrangement applies to multi-entry IRSUBs.
Multi-entry names and relative entry addresses are managed by retaining them in a
management file of RPDP. Figure 1-11 shows how multi-entry IRSUBs (with entry names
“A”, “B”, and “C”.)

Figure 1-11 IRSUB Arrangement (Multi-entry) in Logical Space

area

$IRSUB

IRSUB A area

32-byte boundary

8-byte boundary 8-byte boundary

text data text data

IRSUB B area

...

32-byte boundary

IRSUB multi-entry area

text
data

A

RPDP
management file

...
B C

A

B

C

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-24

2.6 Loading Programs and Creating Tasks
The loader (svload) loads programs and data in areas or sareas based on management
information determined by the allocator.
The loader creates executable modules while retrieving information about CPMS resources,
such as global data, from area management information, and specifying the referenced
information. The created executable modules are stored in backup files on the disk in the
development machine.
Executable modules are loaded as programs. Register them as tasks by using the builder
(svctask). svctask sets task attributes in a CPMS-managed table called the task control
block (TCB).

2.7 Indirect Link Resident Subprograms

Suppose that a task consists of several subprograms. Of these, subprograms that are part of the
task itself are called internal subprograms (ISUBs). In contrast, resident subprograms
(RSUBs) are subprograms that are outside the task and that reside in the main memory so that
they are shared by other tasks.
RPDP supports indirect link RSUBs (IRSUBs). IRSUBs are provided with a management
table linked to tasks. The IRSUB itself can easily be changed without changing the tasks
linked to the management table.
The loader (svload) updates IRSUBs, while the builder (svbuild) updates the indirect
link management table.

2.8 Global (GLB)

The CPMS supports GLB so that the main memory can be shared by tasks. An area for GLB
is allocated by the allocator in advance in the GLB space in the logical space dedicated to
CPMS tasks. A name is assigned to the area so that multiple tasks and subroutines can share
it. The area is divided into areas by svdfa, each of which is further divided into sareas by
svdfs.

2.9 Inter-PU Shared Memory (CM)

The CM is provided in the CPMS for sharing the main memory between PUs in the same unit.
In the same way as global (GLB), an area is allocated in the CM space in the logical space of
CPMS tasks, and this area is named by using the allocator in advance so that it can be shared
by tasks and subroutines in the same unit. The area is divided into areas by svdfa, each of
which is further divided into sareas by svdfs.
To reference the common area by using the same sarea name between PUs that share the CM,
split area names and secondary partition area names allocated to the CM and addresses must
be defined identically in the site corresponding to each PU. To ensure that the addresses of the
split areas to be allocated in the CM space in each site are the same, allocate the split areas by
using the -f option of svdfs.
Allocation of split areas in each site can be made identical by specifying the relative address
from the beginning of the global area $CM by using the -f option.
For details about using the CM area, see 6.1.5 Allocating split areas for the CM.

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-25

2.10 Value (VAL)
The user can register constants to be shared by programs as external names. These external
names are called VAL data. VAL data can be registered by using svdfv and deleted by svdlv.
VAL data is specified by the loader when load modules are loaded in backup files. For this
reason, VAL data must be specified before tasks and subprograms that reference the VAL
data are loaded.

2.11 Indirect Link Global Data

RPDP supports indirect link global data. A management table linked to global data is
specified for indirect link global data. Updating this linked management table makes it easy
to change global data.
The global data itself is updated by using the allocator (svdfs) and the loader (svload).
Areas are defined by using svdfs, and initial values are loaded by using svload. The
builder (svirglb) updates the management table for indirect linking.

2.12 Programming Guide for GLB, VAL, and IRSUB

This section describes the coding and linking methods for GLB, VAL, and IRSUB that are
used by programs and subprograms. (CM can be used in the same way as for GLB.)
(1) Assigning names to GLB and VAL

Table 1-8 Assigning Names to GLB and VAL

Item Specifications

Maximum number
of characters

14 characters (not counting _g and _v)

Naming rules

Single-byte alphanumeric characters and underscores (_).
However, the first character must be an alphabetic
character.
The last character, which indicates the attribute, must be in
the following form:
GLB: _g
VAL: _v

Uniqueness Identical names cannot be used.

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-26

(2) Using GLB and VAL names
Table 1-9 shows how to use GLB and VAL names.

Table 1-9 Using GLB and VAL Names

No. Item C language
1 To declare GLB (on the referencing side) extern long name_g[size];

Explanation:
 name: Global data name
 size: Global data size

2 To reference GLB (specification of a
secondary partition area name)

extern long name_g[size];
main(){
 long i;
 i = name_g[index];
}
Explanation:
 name: Global data name
 size: Global data size

3 To declare GLB (on the referenced side) There is no need to declare GLB.
Set initial values as shown in 4.

4 To set initial values in GLB long name_g[size] = {1,2,3,...};
Explanation:
 name: Global data name
 size: Global data size

5 To reference VAL values extern long name_v;
long y = (long)&name_v;
main(){
 long x;
 x = y;
}
Explanation:
 name: VAL name

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-27

(3) Notes on GLB data reference
When GLB data is referenced at program creation, data handling varies depending on
whether the GLB to be referenced has a defined initial value in the same program. For
this reason, create a program to reference the GLB data, taking into consideration the
following points:
1. If the GLB to be referenced has not been defined in the same program

The above condition is met if the GLB to be referenced in the source program that
becomes an object file to be linked by the source program or svload is not defined as
shown in number 3 or 4 in Table 1-9.
In this case, take (a) to (b) into consideration.
(a) GLB declaration

For GLB declaration, a capacity declaration for each name can be performed as
shown in number 1 in Table 1-9. The compiler and assembler do not perform a
rationality check of this capacity with respect to the size of the area reserved by the
svdfs command. For this reason, if the program references an address that
exceeds the actual area, no error is generated.
Example: Referencing an address that exceeds the declared area
Allocator
svdfs usrresp0 glb2 100

C
extern long glb2_g[100];

 No error is detected.

 glb2_g[100]=;

(b) Reference of a relative address
A GLB reference can be performed in the form of name ±α (where α is a relative
byte address). In this case, the range is -231 ≤ α ≤ 231 - 1.

2. If the GLB to be referenced is defined in the same program
The above condition is met if the GLB to be referenced in the source program that
becomes an object file to be linked by the source program or svload is defined as
shown in number 3 or 4 of Table 1-9.
In this case, take (a) to (c) into consideration.
(a) Reference of the GLB name only

When referencing only a GLB name that has the initial value defined in the
program, there are no particular constraints.
Example: Referencing a name only
C
extern long glb2_g ;

long glb1_g[3] = { (long)&glb2_g , 0 , 100 } ;

glb2_g = glb1_g[0] ;

...
...

...
...

...
...

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-28

(b) Referencing relative addresses from the beginning of GLB
When referencing in the form of name + α, the α value cannot exceed the defined
range. Note that out-of-range check errors are not detected.

glb1_g glb2_g

Namely, when glbl_g + β is indicated, 0 ≤ β < α is required.
Example: Referencing a relative address
C
int glb1_g[3] = { 1,2,3 } ;
int glb2_g[2] = { (long)&glb1_g[0],0 } ; ... The relative address is

within the range.

int glb1_g[3] = { (long)&glb2_g[4],0 } ; ... The relative address is

outside the range.

(c) Notes on operating svload
Suppose that a load module was created from a source program that has a text part
and GLB initial data. If the load module is then loaded by svload simply as a
program or subprogram, no initial values are loaded. To load the initial-value data,
run svload again by using the +D option. That is, with respect to a single load
module, svload must be run twice by using different options. We recommend that
you create a file for initial-value data only, and perform execution separately. You
can define multiple GLB initial values in a source program.

3. Notes on linking
As already described in 1 and 2, when multiple object files are linked by using
svload, they are regarded as linked files even if they are different source files.
Example: Linking two object files

In this example, source 1 and source 2 are regarded as a source program.

α bytes

glb1 initial value definition

glb2 reference

glb2 initial value definition

shc

Object file

svload

Load module

shc

Object file

Source 1 Source 2

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-29

4. When the GLB initial value to be referenced is defined within the same program
When GLB data is to be referenced at the time of program creation, the GLB initial
value to be referenced must not be defined within the same program.
If a GLB initial value definition and its reference are in the same program, the
reference is handled as a reference to local data.
Example 1: When the same program contains both a program and GLB data

Example 2: When a program and GLB data are separated from each other

extern long glb2_g ;

main(){
long x;
 x = glb2_g;
}

a.c

text

glb2 reference

svload +P -o pname a.obj

long glb2_g = 8;

b.c

glb2

GLB area

svload +D b.obj

long glb2_g = 8;

main(){
long x;
 x = glb2_g;
}

a.c

text glb2

glb2 reference

When the program is as shown to the left, the glb2
reference from the program is handled as a reference to
the data part.

GLB initial-value data is loaded as another program.

svload +P -o pname a.obj

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-30

(4) Notes on GLB data loading
1. Coexistence of a program and GLB data

In situations where a program and subprogram that have a text part are included with
GLB initial-value data in the same program, GLB initial-value data is not loaded even
if the loader (svload) loads the program and subprogram as a program (+P) and
subprogram (+I). To load the GLB initial-value data, load again by specifying the +D
option. That is, the program is loaded twice by specifying different options.
In addition, an area sufficient for the size of the GLB initial-value data is allocated in
the program and subprogram data part. For this reason, the program for defining the
GLB initial-value data only needs to provide an initial value definition for GLB.
Example 1: When a program and GLB data coexist (are contained in the same

program)

Example 2: When a program and GLB data are separated from each other

long glb2_g = 8;

main(){
long x;
 x = glb2_g;
}

a.c

text glb2

When the program is as indicated to the left, the GLB
initial value cannot be loaded simply by loading the
program (svload +P). In addition, an area sufficient
for the size of glb2 is allocated in the program data part.

GLB initial-value data is loaded as another
program.

svload +P -o pname a.obj

glb2

GLB area

svload +D a.obj

An area sufficient for the
size of glb2 is allocated
in the program data part.

a.c b.c

extern long glb2_g;

main(){
long x;
 x = glb2_g;
}

text

svload +P -o pname a.obj

long glb2_g = 8;

glb2

GLB area

svload +D

No extra data is allocated for
the program.

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-31

2. Coexistence of GLB initial values and non-GLB data
Multiple sets of GLB initial-value data can be defined in a single program. However,
no data other than a GLB initial value can be defined in a GLB initial-value definition
program.
Example: GLB initial value definition and non-GLB data coexist in the same program

long glb1_g[4] = {1,2,3,4};
long data = 0;
long glb2_g = 8;

a.c

Non-GLB initial value data cannot be included in the data that is to be loaded
into the GLB initial value definition program.

Loading is performed by assuming that the data contains
only a GLB initial-value definition.

svload +D a.obj

glb1 GLB area

glb2

long glb1_g[4] = {1,2,3,4};
long glb2_g = 8;

a.c

svload +D a.obj

glb1

glb2

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-32

(5) IRSUB usage

Table 1-10 IRSUB Usage

No. Item C language

1
IRSUB reference
(IRSUB name selection)

main(){
 name();
}
Explanation:
 name: IRSUB name

2
IRSUB reference
(irsubad function
selection)

void *irsubad();
main(){
 long no;
 long (*adr)();
 no = xxx;
 adr = irsubad(no);
 if(adr != 0){
 (*adr)();
 }else{
 /* Unregistered IRSUB processing */
 }
}
Explanation:
 xxx: IRSUB number

The irsubad function is used to reference an address in an indirect
link table.

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-33

(6) Generating a multitask
To generate a program as a multitask consisting of two tasks, run the svload and
svctask commands as follows:

(7) Generating a multi-entry IRSUB
To generate a subprogram as a multi-entry IRSUB containing three entries, run the
svload and svbuild commands as follows. The following example assumes that a
single-source file contains three modules.

extern long glb2_g;

main(){
long x;
 x = glb2_g;
}

a.c

svload +P -o pname -w 4096 M 2 a.obj
svctask pname task101 101 -r 1
svctask pname task102 102 -r 2

Shared

TEXT DATA STACK OSWK STACK OSWK

For task 101 For task 102 Shared

BSS

subA(){
long X;
 X = 10;
}
subB(){
long X;
 X = 20;
}
subC(){
long X;
 X = 30;
}

subA.c

svload +I -o subA -m subB subC subA.obj
svbuild subA -ir -e 101
svbuild subB -ir -e 102
svbuild subC -ir -e 103

TEXT
DATA

subA subB subC

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-34

2.13 Constraints on CPMS Program Creation
The following constraints apply to the creation of CPMS programs.
(1) Overlay structures are not allowed.

For the CPMS, an overlay structure for tasks or resident subprograms is not allowed.
Accordingly, when creating a task or resident subprogram, be careful that the program
does not become large.

(2) Bulk subroutines are not supported.
The CPMS does not support bulk subroutines that are operated by storing a subprogram
in the auxiliary memory and loading it in the main program as required. Use an indirect
resident subprogram (IRSUB) or internal subprogram (ISUB) built into a task.

(3) Notes on indirect resident subprogram (IRSUB) creation
The IRSUB resides in the main memory unit and is shared by multiple main programs.
Accordingly, the IRSUB occupies a main memory area independent of the main
programs that use it. Because the IRSUB is used by multiple main programs at the same
time, make it reentrant.
A non-reentrant program cannot be an IRSUB. The term reentrant means that when the
IRSUB is used by a main program, the same IRSUB can be used by another main
program.
The following describes the correct procedure for creating an IRSUB.
A reentrant IRSUB is divided into an invariable part, which consists of a text part and a
data part, and a variable part, which consists of work areas. The invariable part is shared
among multiple main programs.
Each main program reserves its variable part, and the IRSUB uses the variable part
prepared for the main program. Accordingly, program the variable part to be used by the
IRSUB so that the stack area can be referenced. The IRSUB cannot use a work area (bss
part) without an initial value.

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-35

When creating a reentrant IRSUB, consider the following three points:
(a) Make all work areas stack areas.
(b) When the IRSUB consists of multiple programs, do not use an area shared by

different programs.
(c) When the defined initial value is a static variable, do not change the value.
The conditions indicated by (a) and (b) above can be verified by checking whether the
section information in the compilation list or linkage map list indicates a B section size of
0.

Procedure part Data part Work area Stack area CPMS work area

text data bss stack OS work

(1) (2) (3)

D: Writing disabled
E: Writing enabled for the corresponding task only

Figure 1-12 Enabling or Disabling Writing

The number (1) indicates writing to the stack area. The corresponding task can be written
to the stack area.
The number (2) indicates writing to the work area. Under normal circumstances, in the
IRSUB, do not reserve a work area or write data. The corresponding task can be written
to the work area.
The number (3) indicates writing to the data part. Tasks cannot be written to the data part.

E

D D
E

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-36

The following are notes on reentrant IRSUB creation in each language.
Example C program:

int b1 ; (1)

int d1 = 10 ; (2)
static int b2 ; (3)
static int d2 = 100 ; (4)
ex() {
static int b3 ; (5)
static int d3 = 1000 ; (6)
int s1 ; (7)
int s2 = 20 ; (8)

}
The program that performs writing for b1 declared in (1) becomes non-reentrant.
The program that performs writing for d1 declared in (2) becomes non-reentrant.
The program that performs writing for b2 declared in (3) becomes non-reentrant.
The program that performs writing for d2 declared in (4) becomes non-reentrant.
The program that performs writing for b3 declared in (5) becomes non-reentrant.
The program that performs writing for d3 declared in (6) becomes non-reentrant.
If writing is performed for s1 or s2 declared in (7) or (8), the reentrant characteristics
of the program are not lost. To use as an IRSUB, create by using only the variables
shown in (7) or (8).

The following describes the area to which each variable is assigned.
Usually, b1 is assigned to the bss area. (*)
b2 is assigned to the bss area.
b3 is assigned to the bss area.
d1 is assigned to the data area.
d2 is assigned to the data area.
d3 is assigned to the data area.
s1 is assigned to the stack area.
s2 is assigned to the stack area.
(*) In other programs, when the initial value is set in b1, it is assigned to the data area.

...
...

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-37

(4) Relocation of programs is not possible.
Program and subprograms are not relocated. A program or subprogram for which the run
area is specified cannot be run in another area. To run a program or subprogram in
another area, delete the program or subprogram, and then re-register the program or
subprogram.

(5) Names can include a maximum of 14 characters.
For program and subprogram names, use a maximum of 14 single-byte alphanumeric
characters and underscores (_). GLB names and VAL names can also include a
maximum of 14 characters. For the representation of GLB or VAL in C, use a maximum
of 16 characters for the name, including the _g and _v parts attached to the end.

(6) Names for GLB or VAL
When a name that ends with _g or _v is declared as an external name, it is interpreted as
a GLB or VAL name. Accordingly, ensure that programs that do not use GLB or VAL
data do not have names that end with _g or _v. In addition, do not use names that end
with _b, because such names are reserved for a future extension.

(7) Make external names unique.
Make external names unique among all GLB names, program names, subprogram names,
and VAL names in the system.

(8) Some names cannot be used.
There are some names that cannot be used and some names that required extra caution
when used to create programs. For details, see APPENDIX A NAMES USABLE IN
PROGRAMS.

(9) Program structure
The structure of programs that run on the CPMS is as follows:

The sizes of these areas are corrected to a 4-byte integer. Furthermore, each of these areas
is arranged so that its start address is a multiple of 8 or 4096. For details on memory
allocation, see section 2.5.

(10) Constraints on start addresses
By default, the allocator corrects the GLB area so that its start address is a multiple of 4.

text

data

stack

bss

OS work

Area for program procedures

Area for initial program data

Dynamic work area used by tasks

Static work area used by programs

Dynamic work area used by the OS

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-38

(11) Handling of initial values
Note the following with respect to the handling of initial values.

Area CPMS

data Programmed value
bss Unfixed
stack Unfixed

(12) Size of the initial data of GLB and CM

Note that, after the compiler completes alignment, the data in the object file might
become larger than the size defined in the source program. The following is a specific
example.
To speed data access, CPMS uses natural alignment, in which fixed addresses are used
according to the data type. Because the compiler or linker automatically places data,
alignment does not need to be accounted for in user code. Note, however, that the actual
size of the initial data in GLB and CM might exceed the size of the coded structure, as
shown in the following example.

Size of code: 16 bytes Size of initial data in memory: 24 bytes

struct{
 char a;
 short b;
 long c;
 char d;
 double e;
}ABC;

Figure 1-13 Comparison of Data Sizes

0 15
0

2

4

8

16

a

b

c

d

e

: Free area

2. PROCEDURES FOR PROGRAM DEVELOPMENT

1-39

Action
(1) When configuring the structure, consider the order in which data is placed so no free

areas remain.

struct{

 char a;

 char d;

 short b;

 long c;

 double e;

}ABC;

Figure 1-14 Sample Declaration of a Structure with Data Relocation Taken into Account

(2) If free areas must remain, explicitly declare that the structure contains one or more

free areas. (If you do not do so, free areas might or might not be allocated depending
on the machine.)

struct{ struct{

 char a; char a;

 char d; char d;

 long c; short

 double e; dummy1;

}CBA; long c;

 double e;

 }CBA;

Figure 1-15 Example of Explicitly Declared Free Areas

(3) The structure size in bytes must be a multiple of the maximum type in the structure.

When allocating structure arrays, make sure that the first address of the second or
subsequent structure is an accessible address.

struct{

 char a;

 char d;

 short c;

 char e;

 char dummy2;

}CCC[2];

Figure 1-16 Sample Declaration with Structure Size Taken into Account

0 15
0

2

4

8

a

b

c

e

d

0 15
0

2

4

8

a
dummy1

c

e

d

0 15
0

2

4

6

8

10

a

c
d

e

a d

c

e

dummy2

dummy2

3. INSTALLATION AND EXECUTION ENVIRONMENT

1-40

CAHAPTER 3 INSTALLATION AND EXECUTION ENVIRONMENT

3.1 Installation

Install the RPDP/S10VE software product that includes RPDP by using the installer. Insert the
RPDP/S10VE disc into the CD drive, and then from the Explorer, run setup.exe in the
S789810 folder of the CD drive. Log in to the system as an administrator, and then start
installation.

3.2 Prerequisite Software Products

The prerequisite software products listed in Table 1-11 are required to use RPDP.
Furthermore, the SHC compiler (Ver. 9.04 Release 00) is required to compile and load
programs by using RPDP.

Table 1-11 Prerequisite Software Products of RPDP

Name Model

CPMS/S10VE S-7898-05
RCTLNET/S10VE S-7898-60
RPDP/S10VE S-7898-10
BASE SYSTEM/S10VE S-7898-38

3.3 Notes on Installation

3.3.1 Notes on installing RPDP

After RPDP is installed, log in to the system again.
To reinstall RPDP, open the Control Panel, select Uninstall a program, uninstall the
software, and then reinstall RPDP/S10VE.

3.3.2 Notes on installing the SHC compiler

To install the SHC compiler (Ver. 9.04 Release 00), install it in the default installation
destination (C:\Program Files (x86)).

3. INSTALLATION AND EXECUTION ENVIRONMENT

1-41

3.4 RPDP Execution Environment
(1) Execution environment setup file

Environment settings are required to use RPDP. The RPDP execution environment of
S10VE is specified by the setup file
(%SystemRoot%\renix\usr\rpdp_hce\etc\RPDP.ini). When RPDP/S10VE
is installed, a default setup file is created. To use values that differ from the default values,
modify the setup file data after installing RPDP.

Table 1-12 Values Specified for the S10VE RPDP Execution Environment

No.
Environment

variable
Setting description Default value Remarks

1 SHCPU Sets the CPU type. You must specify
SH4.

SH4

2 SHC_INC Sets the include file storage directory of
the compiler.

%ProgramFiles(x86)%\Renesas\
Hew\Tools\Renesas\Sh\9_4_0
\include

3 SHC_LIB Sets the installation directory of the
compiler.

%ProgramFiles(x86)%\Renesas\
Hew\Tools\Renesas\Sh\9_4_0
\bin

4 SHC_TMP Sets the directory in which the compiler
creates temporary files.

%SystemRoot%\renix\tmp

5 HLNK_DIR Sets the library search path of the
svload command of RPDP for
S10VE.

%SystemRoot%\renix\S10VE\lib

6 HLNK_TMP Sets the directory in which the linkage
editor creates temporary files.

%SystemRoot%\renix\tmp

(2) Setting the environment variable PATH

For the environment variable PATH, set the command path of RPDP. When RPDP/S10VE
is installed, the default value %SystemRoot%\renix\S10VE\bin;
%ProgramFiles(x86)%\Renesas\Hew \Tools\Renesas\Sh\9_4_0\bin is
set at the beginning of PATH.

3. INSTALLATION AND EXECUTION ENVIRONMENT

1-42

3.5 Registering an RPDP User Account
To use RPDP, log on to the system by using the account belonging to the dedicated group (the
RPDPusers group). You can create a new account that belongs to the RPDPusers group or
make an existing account a member of the RPDPusers group.

3.5.1 Registering a new account

(1) Log in as the Administrator.
(2) From the Control Panel, select Administrative Tools and then Computer

Management.
(3) Double-click System Tools, Local Users and Groups, and then Users in the console

tree (the left pane) to display the users list.
(4) Register the dedicated account as follows:

1. From the Action menu, select New User. The New User dialog box appears.
2. In the New User dialog box, enter the user name and other necessary items, and then

register the new account. You can enter a user name and password of your choice.
3. Double-click the created user to display the user properties dialog box.
4. Select the Member Of tab and click the [Add] button to display the Select Groups

dialog box.
5. Click the [Advanced] button, and then click the [Search] button to display a list of

groups. In the Name (RDN) column, select RPDPusers from the list, and then click
the [OK] button to add RPDPusers.
The RPDPusers group is automatically registered when RPDP/S10VE is installed.

6. Click the [OK] button to close the Select Groups dialog box.
7. Click the [OK] button to close the user properties dialog box.

3. INSTALLATION AND EXECUTION ENVIRONMENT

1-43

3.5.2 Adding RPDPusers as a group to which an existing account belongs
(1) Log in as the Administrator.
(2) From the Control Panel, select Administrative Tools and then Computer

Management.
(3) Double-click System Tools, Local Users and Groups, and then Users in the console

tree (the left pane) to display the users list.
(4) Add RPDPusers as a group to which the account belongs as follows:

1. Double-click the user who you want to belong to the RPDPusers group. The user
properties dialog box appears.

2. Select the Member Of tab and click the [Add] button to display the Select Groups
dialog box.

3. Click the [Advanced] button, and then click the [Search] button to display a list of
groups. In the Name (RDN) column, select RPDPusers from the list, and then click
the [OK] button to add RPDPusers.
The RPDPusers group is automatically registered when RPDP/S10VE is installed.

4. Click the [OK] button to close the Select Groups dialog box.
5. Click the [OK] button to close the user properties dialog box.

4. COMPILER

1-44

CHAPTER 4 COMPILER

This chapter describes the S10VE compiler and assembler in detail. For the command reference, see
PART 2 COMMAND REFERENCE.
With respect to compiler and assembler use, RPDP assumes the use of Renesas Microcomputer
Development Environment System SuperH RISC engine C/C++ Compiler Package Ver. 9.04
Release 00 (hereinafter abbreviated to the shc compiler).

4.1 Details of C Compiler Options

This section describes how to compile with shc, as well as points to note when compiling. For
detailed specifications for shc, see the documentation included with the shc compiler.
 Command syntax
shc [∆option...][∆file-name[∆option...]...]
Example: shc∆test1.c∆test2.c

 Setting up the RPDP execution environment
For details on the execution environment settings, see 3.4 RPDP Execution Environment.

 Setting up the shc execution environment
To directly use the shc compiler, the environment variables necessary for the shc compiler
operations described in Table 1-13 must be set.
To directly use the Ver. 9.04 shc compiler, environment variables settings must be specified
for Ver. 9.04.

 Setting up the interface used with the CPMS
To use the user interface with the CPMS, you need to specify the include file storage
directory to be used with S10VE (%windir%\renix\s10ve\include), which is
shown in Appendix C, in the search directory of the include file.
The search directory can be specified by using the SHC_INC environment variable or the
include option of the shc complier.

4. COMPILER

1-45

Table 1-13 Environment Variables Required for shc Compiler Operation

No.
Environment

variable
Setting description

1 path Add the executable file storage directory of the installed compiler package to the
path environment variable.
You need to set the paths of both the compiler (shc) and optimization linkage editor
(optlnk).
This environment variable must always be specified.
Specification format:
path= executable-file-path [;existing-path;...]

2 SHC_LIB Specify the directory in which the load module and system include file of the
compiler are stored.
This environment variable must always be specified.
Specification format:
set SHC_LIB= executable-file-path

3 SHCPU Specify the target CPU type. For this system, set SHCPU to SH4.
When this environment variable is not specified, the system assumes that the CPU
type is SH1. The CPU type can also be specified using the -cpu option.
Specification format:
set SHCPU= CPU

4 SHC_INC Specify the include file storage directory of the compiler. The system include file
search will be conducted in the following order of locations: the directory specified
by the include option, the directory specified by SHC_INC, and the system
directory (SHC_LIB).
The user include file search will be conducted in the following order of locations: the
current directory, the directory specified by the include option, and the directory
specified by SHC_INC.
Specification format:
set SHC_INC= include-path [;include-path;...]

5 HLNK_DIR Specify the input file storage directory for the optimization linkage editor.
Files specified by the input option and library option will be searched for in the
following order of locations: the current directory and the directory specified by
HLNK_DIR.
The library search path of the loader also follows the HLNK_DIR setting.
Specification format:
set HLNK_DIR= input-file-name [;input-file-name;...]

6 SHC_TMP Specify the directory in which the compiler creates temporary files.
Specification format:
set SHC_TMP= directory

7 HLNK_TMP Specify the directory in which the linkage editor creates temporary files.
Specification format:
Set HLNK_TMP= directory

4. COMPILER

1-46

4.2 Notes on Compiling

4.2.1 Compiling by using shc

 Handling of floating-point numbers
The shc compiler can control denormalized numbers and the rounding of floating-point
numbers by using compilation options.
However, note that the standard libraries to be linked during loading vary depending on
their handling. The following shows the options that control handling of denormalized
numbers and rounding, as well as the applicable standard libraries. (When no library is
specified during loading, the loader links libsh4nbmdn.lib.)

Table 1-14 Floating-point Number Control Options

 Specification Option (*2) Default
Handling in

cchr

Handling of a
denormalized
number

Handled as 0 -denormalization=off
Handled as 0

Handled as a
denormalized
number

Handled as a denormalized
number (*1)

-denormalization=on

Rounding of
the result
value

The part beyond the
significant figures is
rounded down.

-round=zero
Rounded
down

Rounded off
The part beyond the
significant figures is
rounded off.

-round=nearest

(*1) If the S10VE CPU SH4A (SH7786) is running in a mode where denormalized numbers are handled as
denormalized numbers, an FPU error occurs when denormalized numbers are entered. Therefore, the
SH4A is run in a mode where denormalized numbers are handled as 0.

(*2) Specify -denormalization=on and -round=nearest to handle floating-point numbers in the
same way as cchr.

Table 1-15 Handling of Floating-point Numbers and Applicable Standard Libraries

 -denormalization -round Standard library

Specified option

off zero libsh4nbmzz.lib
on zero ‒
off nearest ‒
on nearest libsh4nbmdn.lib

• Two standard libraries are provided: one is the shc default -denormalization=off

and -round=zero. The other is the cchr-compatible -denormalization=on, and
-round=nearest.

4. COMPILER

1-47

 Generating and saving a compilation list (shc)
Generate and save a compilation list that is required to calculate the stack sizes to be used
by tasks. To generate a compilation list, specify the following option.
Specify the -listfile option prior to the C source file to be compiled.
If this option is specified after the C source file, a compilation list of only the last file is
generated.
 Specifying the generation of a compilation list

If the list file name is not specified, a file with the same file name as the source file
name (with the extension lst added) is created.

Example:

 shc ∆-listfile ∆test1.c ∆test2.c

The listfile option is enabled for test1.c and test2.c.

 shc ∆test1.c ∆test2.c ∆-listfile

The listfile option is enabled only for test2.c.

 Specifying -fpscr=safe when compiling a built-in subroutine

The shc compiler has a function to specify whether to ensure the precision mode of the
FPSCR register around the time that a function is called (-fpscr). The default
specification is such that precision is not ensured around the time that a function is called
(-fpscr=aggressive). Therefore, a code to return the FPSCR precision mode to
single-precision after a return from the function call is generated.
In the S10VE, floating-point calculations cannot be performed in the built-in subroutine.
(An “FPU Unavailable” exception occurs during execution and the CPU stops.)
When the built-in subroutine is compiled with -fpscr=aggressive specified, an
FPSCR access is made and an “FPU Unavailable” exception occurs when a function is
called, even if floating-point calculations are not performed.
For this reason, when compiling the built-in subroutine (including an IRSUB called from
the built-in subroutine), specify the -fpscr=safe option.

-listfile [= list-file-name] -show=source,object

4. COMPILER

1-48

4.3 shc Version Comparisons

4.3.1 Command line options

Table 1-16 shows a comparison of the command line options of shc.

Table 1-16 Comparison of Versions of the shc Command Line Options

shc
Version

Meaning
V7 V9

-code=machinecode
○ ○ Does not provide linking. Generates an object

module.
-define=name
-define=name=def

○ ○ Defines the name.
Defines the name in the def position.

-debug ○ ○ Generates debug information.
-listfile
-show=source,object

○ ○
Inserts a source file line into an assembler source.

ANSI compliance by
default

○ ○
Compiles only programs that are ANSI-compliant.

-endian=big
○ ○ Performs compilation in big-endian mode (the

default value is big).
-endian=little ○ ○ Performs compilation in little-endian mode.

-sjis (default)
○ ○ Supports kanji (Shift JIS). This option can be

specified only for the K%R specification.
-show=length=n ○ ○ Specifies the number of lines per source list page.
-listfile
-listfile=filename

○ ○ Displays a source list.
However, the list contents for cchr and shc differ.

-include=dir ○ ○ Adds an include file search directory.
-optimize=0
-optimize=1

○ ● Sets the optimization level.
For shc V7 and V9:
optimize=0: provides no optimization;
optimize=1: provides optimization.
You can select an optimization method with
-speed, -nospeed, or -size.
For shc V9:
Optimization related to the deletion of individual
statements is fully suppressed, and local variable
information can be referenced at all times.

-speed
-nospeed
-size

○ ○

-preprocessor[=file]
○ ○ For shc:

Performs preprocessor execution only, and stores
the result in the .p file.

-code=asmcode
○ ○ Generates an assembler source.

Does not start the assembler or linker.

The underlined portions of the shc options are the abbreviated forms that can be used when specifying the
options. The italicized options are the default options that take effect when the relevant option is omitted.

V7 and V9 legend
○: A corresponding option exists.
●: Changes are present in V9.

4. COMPILER

1-49

4.4 Data Generator
Using the data generator makes it possible to load initial values to the GLB and CM areas in
an environment in which the shc compiler is not installed.
The following describes the procedure to load initial values to the GLB and CM areas without
using the compiler.
1. Create a text file that contains edition data to be loaded.
2. Convert the text file to binary data by using the data generator command (svdatagen).
3. Load initial values to the backup file by using the loader (svload).
 For the specifications of the text files that contain data, see (a) svd atagen input

specifications, (b) Differences between C language declaration statements and restrictions,
(c) Example of a valid input file, (d) Examples of invalid input files, (e) Restrictions on
preprocessor functions, and (f) Initial value type conversion specifications.
The following describes loader (svload) operations to load the binary data generated by
the data generator (*.bin) to the backup file.

svload +B xx.bin

+B: Loads the initial value data generated by svdatagen.
xx.bin: Specifies the binary file generated by svdatagen.

The following describes svcomp operations to compare the binary data generated by the
data generator (*.bin) with the GLB data loaded in the backup file.

svcomp +B xx.bin

+B: Compares the initial value data generated by svdatagen with the initial GLB
value.

xx.bin: Specifies the binary file generated by svdatagen.

4. COMPILER

1-50

(a) svdatagen input specifications
Input file specifications:

The input file specifications are a subset of the declaration statements of the C
language.
The following describes the syntax of the data that can be included in the input file.
The #include and #define preprocessor reference terms can also be included. For
the specifications and restrictions of preprocessor reference terms, see (e) Restrictions
on preprocessor functions.

Declaration:
 extern type specifier array[] ;
 Type specifier declarator = initial-value ;
 Structure specifier ;

Type specifiers:
 void
 char
 short
 int
 long
 float
 double
 signed
 unsigned
 Structure specifier

Structure specifiers:
 struct { structure-member-declaration-list }
 struct tag { structure-member-declaration-list }
 struct tag

Structure member declaration list:
 Type specifier declarator ;

Declarator:
 Variable
 Array [size]
 *Variable
 *Array [size]

Initial values:
 Assignment expression
 { initial-value-list }
 { initial-value-list, }

Initial value list:
 Initial-value
 Initial-value-list, initial-value

Assignment expression:
 Constant

 Constants:
 Integer constant
 Character constant
 Floating-point constant
 GLB name
 VAL name

4. COMPILER

1-51

(b) Differences between C language declaration statements and restrictions
The following describes the differences between the C language declaration statements, as
well as restrictions.
(1) Only the preprocessor functions #define and #include can be used with

restrictions.
For details about restrictions, see (e) Restrictions on preprocessor functions.

(2) Only declaration statements can be included in the input file.
(3) Only the storage class specifier extern can be included.

(See Example 2 in (d) Examples of invalid input files.)
(4) Type names from union, enum, or typedef cannot be used for the type specifier.

(See Examples 3 and 4 in (d) Examples of invalid input files.)
(5) The bit field cannot be used.

(See Example 5 in (d) Examples of invalid input files.)
(6) Type modifiers (const and volatile) cannot be used.

(See Example 6 in (d) Examples of invalid input files.)
(7) Only variables, arrays, pointers, and pointer arrays can be included in a declaration.

Pointers to functions and pointers to arrays cannot be included.
(See Example 7 in (d) Examples of invalid input files.)

(8) The array size cannot be omitted. Declare the required size.
(See Example 8 in (d) Examples of invalid input files.)

(9) Only constants and GLB or VAL external names can be provided as initial values. No
expressions can be included.
However, an expression consisting of the unary operators + (plus) and - (minus), as
well as constants (decimal numbers or floating-point constants), can be included.
(See Example 9 in (d) Examples of invalid input files.)

(10) No octal values, hexadecimal values, or character constants can be included after a +
(plus) or - (minus) sign.
(See Example 10 in (d) Examples of invalid input files.)

(11) Enumeration constants and character string constants cannot be provided as constants.
Initialize a character string sequentially at the individual character level by using
character constants.
(See Example 8 in (d) Examples of invalid input files.)

(12) Codes that are two or more bytes (including kanji and abcd) cannot be provided as
character constants.
(See Example 11 in (d) Examples of invalid input files.)

(13) Escape sequences (except for \0) in the \ooo or \xhh format cannot be provided as
character constant.
(See Example 12 in (d) Examples of invalid input files.)

(14) Wide-character constants (including L 'x') cannot be used.
(See Example 13 in (d) Examples of invalid input files.)

(15) The suffixes of integer constants (u, U, l, L, ul, and UL) cannot be used. Match the
constant type with the declarator type.
(See Example 14 in (d) Examples of invalid input files.)

(16) The suffixes of floating-point constants (f, F, l, and L) cannot be used. Match the
constant type with the declarator type.
(See Example 14 in (d) Examples of invalid input files.)

4. COMPILER

1-52

(17) When an aggregate is included in the member of an aggregate (structure, array), the
initial value of the subaggregate (the aggregate of the member) cannot be specified by
enclosing it with curly brackets ({ }). In other words, curly brackets ({ }) cannot be
included in the initial value list ({ }).
Specify all of the required arrays and initial values of the structure. However, when
the number of initial values is less than the number of array and structure elements,
the rest are initialized as 0.
(See Examples 15 and 16 in (d) Examples of invalid input files.)

(18) Enclose a comment by using /* */. A comment can span multiple lines.
Comments of the // format cannot be used.
(See Example 17 in (d) Examples of invalid input files.)

(19) When an error or unsupported syntax is detected in the input file, processing
terminates immediately, and subsequent inputs are not interpreted.

(20) The type conversion when the declaration type does not match the format for
specifying the initial values differs depending on the compiler.
For details, see (f) Initial value type conversion specifications.

4. COMPILER

1-53

(c) Example of a valid input file
The following is an example of a valid input file.

/* Include file */
#include ”defines.h”
/* GLB/VAL external name declaration */
extern int tbl1_g[] ;
extern int tbl20_g[] ;
extern int tbl21_g[] ;
extern int tbl22_g[] ;
extern int tbl23_g[] ;
extern int val1_v[] ;

/* Variable */
int int_var_g = 1 ;

/* Array */
int int_array[10] = {0,1,2,3,4,5,6,7,8,9} ;

/* Structure */
struct {
 int a ;
 int b ;
 int c[10] ;
} struct_var_g = {1,2,10,11,12,13,14,15,16,17,18,19} ;

/* Pointer */
int *tbl1p_g = tbl1_g ;
int *val1p_g = val1_v ;

/* Pointer array */
int *tbl2xp_g[4] = {tbl20_g,tbl21_g,tbl22_g,tbl23_g} ;

/* Initialization of character array */
char str_g[12] = {'I',' ','a','m',' ','s','t','r','i','n','g','\0'} ;

/* Initialization of an aggregate including a subaggregate */
struct Y {
 int a ;
 struct X {
 int a ;
 float b ;
 float c ;
 } x ;
} y_g = {-1,+2,3.0,4e1} ;

float f_g[4][3] = {1,3,5,2,4,6,3,5,7} ;

/* Reference of define value */
int defines[4] = {VAL1, VAL2, GLB1ADDR, GLB2ADDR} ;

Contents of defines.h

#define VAL1 100

#define VAL2 200

#define GLB1ADDR 0x50020000

#define GLB2ADDR 0x50021000

Figure 1-17 defines.h

4. COMPILER

1-54

(d) Examples of invalid input files
The following are some examples of invalid input files.

extern int tbl1_g[] ;
extern int tbl20_g[] ;
extern int tbl21_g[] ;
extern int tbl22_g[] ;
extern int tbl23_g[] ;
extern int val1_v[] ;

/* Example 1: Preprocessor reference term (out of specification range) */
#define XMAX 10.0e100

/* Example 2: static storage class specifier */
static int int_array[10] = {0,1,2,3,4,5,6,7,8,9} ;

/* Example 3: union */
union {
 long a ;
 float b ;
} struct_var_g = {1} ;

/* Example 4: typedef */
typedef int* tblp ;
tblp tbl1p_g = tbl1_g ;

/* Example 5: Bit field */
struct bit{
 int a:8 ;
 int b:8 ;
 int c:8 ;
 int d:8 ;
}bit_g = {1,2,3,4} ;

/* Example 6: Type modifier */
const int ro_g = 1 ;

/* Example 7: Complex declaration */
int *(tbl2xp_g[])[4] = {tbl20_g,tbl21_g,tbl22_g,tbl23_g} ;

/* Example 8: Omission of array size and character string */
char str_g[] = ”I am string” ;

/* Example 9: Expression */
int *val1p_g = val1_v+4 ;
int *tbl11p_g = &tbl1_g[0] ;
int var3_g = XMAX+1 ;
int var4_g = (int)1 ;

4. COMPILER

1-55

/* Example 10: Signed octal number, hexadecimal number, and character
constant */
int var5_g[3] = {+01, -0x1, -'x'} ;

/* Example 11: Code consisting of two or more bytes */
int a_g = 'abcd' ;
int b_g = 'Kanji' ;

/* Example 12: Escape sequence */
char bell_g = '\007' ;

/* Example 13: Wide-character constant */
wchar_t wc_g = L'x' ;

/* Example 14: Suffix of constant */
unsigned int ui_g = 1U ;
long l_g = 1L ;
unsigned long ul_g = 1UL ;
float f_g = 1.0F ;
double d_g = 1.0L ;

/* Example 15: Initialization in a subaggregate { } */
struct Y {
 int a ;
 struct X {
 int a ;
 float b ;
 float c ;
 } x ;
} y_g = {-1,{+2,3.0,4e1}} ;

/* Example 16: Omission of the initial values of a subaggregate */
float f_g[4][3] = {{1},{2},{3},{4}} ;

/* Example 17: Comment format */
// Comments cannot be used in this format.

4. COMPILER

1-56

(e) Restrictions on preprocessor functions
(1) Only #include and #define can be specified.
(2) Only #define can be specified in files included by #include.

#include cannot be nested.
(3) Specify #include in the following format.

Enclose file names by using double quotation marks (“ ”). File names enclosed by
angle brackets (< >) are not interpreted as include files.
When the file name is a relative path, it is interpreted as relative from the directory that
contains the input file.

#include “file-name”

(4) The #define function supports only the following format. Only the replacement of

simple names and integer constants is possible.
Macros for values other than floating-point constants, character constants, and
constants cannot be included.
Octal, decimal, and hexadecimal constants can be provided as integer constants.
Signed decimal values can also be included.

#define name integer-constant

(5) Reference of names defined by #define can be included only in the list of initial

values. If such references appear in anything other than the initial values list, they are
not expanded.

(6) Values defined by #define are valid throughout the entire input file, but cannot be
redefined.

4. COMPILER

1-57

(f) Initial value type conversion specifications
The following table shows variable declaration types, availability of type conversion
according to the format for specifying initial values, and differences from the compiler
(shc compiler).

Table 1-17 Initial Value Type Conversion Specifications

Format for specifying initial values

Octal number Decimal number
Hexadecimal

number
Floating-point

number
Character
constant

External name

shc
svdata
gen

shc
svdata
gen

shc
svdata
gen

shc
svdata
gen

shc
svdata
gen

shc
svdata
gen

Type of
variable

char char char char char char char char ‒ char char ‒ char

short short short short short short short short ‒ short short ‒ short

long long long long long long long long ‒ long long ‒ long

float float ‒ float float float ‒ float float float ‒ ‒ ‒

double double ‒ double double double ‒ double double double ‒ ‒ ‒

Pointer ‒ addr ‒ addr ‒ addr ‒ ‒ ‒ ‒ addr addr

char, short, long, float, double: Generates initial values in accordance with the respective types.
addr: Generates a 4-byte address value.
‒: Indicates that no initial value can be generated.
 : Indicates differences between the shc compiler and the svdatagen command.

5. PROGRAMMING COMMANDS

1-58

CHAPTER 5 PROGRAMMING COMMANDS

5.1 Notes on Programming Commands

As S10VE programming commands, the librarian provides optlnk and the linker provides
svload. The makehce command is supported as a make command.
For details about optlnk, see Section 4 Optimizing Linkage Editor Options in the shc manual
(SuperH RISC engine C/C++ Compiler, Assembler, Optimizing Linkage Editor User’s
Manual).

6. ALLOCATOR

1-59

CHAPTER 6 ALLOCATOR

6.1 Allocating and Deallocating Split Areas

6.1.1 Necessity for split areas

Storage areas must be allocated for the tasks, subprograms, GLB, and other shared resources
to be used by a real-time program before its development.

To speed up processing, the real-time system allows access to various resources through the
addresses where they are stored. To achieve this, the storage addresses of resources must be
consistent throughout program execution. The allocator divides areas in the computer into
user-specified areas. The system keeps track of these areas so that they are retained at the
specified addresses. In the system design stage, check how much data is required against the
target to which the system is applied, and determine the size and position of GLB. In most
real-time systems, the design of the data is more important than the creation of individual
programs, and significantly affects the overall performance of the system.

Allocate areas at two stages:
(1) Define split areas (AREAs) for tasks, subprograms, and GLB.
(2) Use svdfs further to divide AREAs for GLB into secondary partition areas (SAREAs)

as necessary.

When split areas and secondary partition areas are defined by the allocator, their names,
attributes, positions, sizes, and other information are recorded as area management
information. The real-time program can use the names defined in the information to
reference or call shared resources such as GLB.

Since areas for shared resources are allocated in a fragmentary manner, they can be
allocated separately from those for ordinary resources. This is especially useful when
redefining allocated split areas, because the need to redefine other split areas is minimized.

6. ALLOCATOR

1-60

6.1.2 Allocating split areas
Split areas are arranged within a predefined global area (GAREA) in accordance with their
use. Table 1-18 shows the relationship between split area use and GAREA selection.
The use of the split area to be defined must be specified by using an option with the svdfa
command at the time of split area allocation.

Table 1-18 Relationship between Split Area Use and GAREA Selection

Split area use GAREA selection svdfa option
Task (program) $TASK -p
Data for CM $CM -cmi, -cmw
Read-only GLB data $GLBR -gr
Read/write GLB data $GLBRW -gi, -gw
Subprogram $IRSUB -s

When a split area is allocated, an area sufficient for the specified size is acquired within the
global area. However, it is not reflected in the S10VE memory until the allocated split area
is downloaded.
Furthermore, when a split area is allocated, an initial value setup file (backup file) for the
real-time resource to be placed within the split area is generated.
With respect to a split area for GLB or CM, without an initial value, however, no backup
file will be generated.
The contents of the backup file are initialized to zero (0).
The following commands are supported to allocate split areas:

svdfa: Allocates a split area (AREA).
svdfs: Allocates a secondary partition area (SAREA).

6. ALLOCATOR

1-61

Figure 1-18 shows a sample layout of split areas.

glb_1 (4096 byte) (AREA) glb_2 (4096 byte) (AREA)

cond_1
(1024 bytes)

(SAREA)

act_1
(2048 bytes)

(SAREA)

Free

co
nd

_2

(2
56

 b
yt

es
)

su
b_

2
(1

28
 b

yt
es

)

Free

 (SAREA)

Figure 1-18 Sample Layout of Split Areas

Allocation example for the preceding layout

#svdfa glb_1 4096 -gw
#svdfs glb_1 cond_1 1024
#svdfs glb_1 act_1 2048

#svdfa glb_2 4096 -gw
#svdfs glb_2 cond_2 256
#svdfs glb_2 sub_2 128

6. ALLOCATOR

1-62

Allocate the split areas according to the layout in Figure 1-18.

$svdfa glb_1 4096 -gi

$svdfa glb_2 4096 -gi

$svdfs glb_1 cond_1 1024

$svdfs glb_1 act_1 2048

$svdfs glb_2 cond_2 256

$svdfs glb_2 sub_2 128

$svmap -g -a -e

** allocator map ** 2018/02/07 15:19:13

 site name = 0001cp

< area >

garea/aname raddr size laddr kind bkupfile

 :

 :

$GLBRW/glb_1 + u 00002000 00001000 50002000 glbi glb_1.bkf

$GLBRW/glb_2 + u 00003000 00001000 50003000 glbi glb_2.bkf

$GLBRW/ 00004000 00020000 50004000

 :

 :

< sarea >

garea/aname/sname raddr size laddr

 :

 :

$GLBRW/glb_1/cond_1 + u 00000000 00000400 50002000

$GLBRW/glb_1/act_1 + u 00000400 00000800 50002400

$GLBRW/glb_1/ 00000c00 00000400 50002c00

$GLBRW/glb_2/cond_2 + u 00000000 00000100 50003000

$GLBRW/glb_2/sub_2 + u 00000100 00000080 50003100

$GLBRW/glb_2/ 00000180 00000e80 50003180

 :

 :

** map output end **

$

6. ALLOCATOR

1-63

In the real-time program, the names cond_1, act_1, cond_2, and sub_2 are assigned
to the defined split areas so that these shared resources can be used.

When changing the size or attribute of an allocated split area, be careful not to make the new
size smaller than the total size of the defined secondary partition areas.
If the new size is smaller than the total size of the secondary partition areas, secondary
partition areas cannot be allocated in the specified split areas.

$notepad sample.c

extern int cond_1_g[256];
extern int act_1_g[512];
extern char cond_2_g[256];
extern short sub_2_g[64];
main()
{
short abc;
cond_1_g[10] = 0;
act_1_g[20] = 30;
cond_2_g[255] = 'A';
abc = sub_2_g[0];
}

6. ALLOCATOR

1-64

6.1.3 Deallocating split areas
The following commands are supported to deallocate split areas:

svdla: Deallocates a split area (AREA).
svdla: Deallocates a secondary partition area (SAREA).

For example, glb_1 and glb_2, which were allocated in section 6.1.2, are to be deleted from
the GLB as follows. Note that these deletion operations delete the desired split area along
with any secondary partition areas inside it. For example, if glb_2 is deleted, the secondary
partition areas cond_2 and sub_2 defined within it are also deleted at the same time.

6.1.4 Assigning names to GLB and VAL

The names of GLB and VAL must be unique in the system.
 The maximum number of characters in a name (the number of bytes) is limited to 14.
 Each name must begin with a letter or an underscore (_).
 The second and subsequent characters can be a combination of letters, numbers, and

underscores (_).
Note, however, that real-time programs using names under these rules are also restricted by
the following naming rules in C.

Restrictions in C:
 The maximum number of characters in a name (the number of bytes) is limited to 14.
 Each name must begin with a letter.
 The second and subsequent characters are a combination of letters, numbers, and

underscores (_).
 Each name is suffixed with one of the following character strings. Characters in the

suffix are not counted as part of the name.
For GLB: _g
For VAL: _v

 When declaring GLB or VAL, be sure to use an external variable with extern
specified.

$svdla cond_1

$svdla act_1

$svdla glb_1

$svdla glb_2

$svmap -g

** allocator map ** 2018/02/07 15:19:13

 site name = 0001cp

 :

< global,CM,DCM,irglb >

 :

** map output end **

$

6. ALLOCATOR

1-65

6.1.5 Allocating split areas for the CM
The CPMS provides CM as a means to share main memory between PUs in the same unit.
This method allocates an area in the CM space in the logical space of CPMS tasks, uses the
allocator to name the area, and then shares the area among tasks and subroutines in the same
unit. The aforementioned area is divided into areas by using svdfa, and each divided area
is further divided into sareas by using svdfs.
The CM space is used as communication memory between the HP and the CP of the CPU.
The following figure illustrates the CM space in the logical space of the CPMS.

Figure 1-19 Correspondence between CM Spaces in the Logical Space of the CPMS and CM
Spaces in the S10VE Main Memory

Bus memory
space, etc.

0x
00

00
00

00

0x
20

00
00

00

0x
28

00
00

00

0x
30

00
00

00

0x
40

00
00

00

0x
50

00
00

00

0x
60

00
00

00

0x
70

00
00

00

0x
75

00
00

00

0x
78

00
00

00

0x
80

00
00

00

Kernel space
LADDER,

HIFLOW,

etc.

$MAP $CPMS $TASK $GLBR $GLBRW $SUB $CM Reserved

CM for CPU
CM for

XPU2

CM for

XPU3

OS ...

Physical memory space (CPU)

(The CM for XPU1, XPU2, and XPU3 are

reserved for future expansions.)

CM for

XPU1

CM

for CPU

0x
70

00
00

00

0x
72

00
00

00

0x
73

00
00

00

0x
74

00
00

00

Logical

space

6. ALLOCATOR

1-66

Using CM
 Allocating split areas in CM areas

In the site for each PU (HP and CP) of the RPDP, the names of any split areas and
secondary partition areas (defined in the CM space corresponding to a site) are valid
only in the relevant site. Therefore, when sharing these split areas and secondary
partition areas between the site for the HP and the site for the CP, split areas and
secondary partition areas must be identically defined in both sites.
To allocate split areas defined in the CM area to the same addresses in both sites,
specify the -f option when split areas are defined by the svdfa command. Doing so
equalizes the relative address from the beginning of the global area $CM between both
sites. Failure to specify the -f option when defining split areas in the CM area results
in an error. The backup file for the split areas defined in the CM area is created in the
site for CP.
The following is an example of sharing CM between the CP and the HP.

As shown in the preceding operation example, define areas so that identical names and
identical addresses are obtained, including the areas on the CP side and HP side.

 Loading data to CM areas
Split areas and secondary partition areas in CM areas must be defined for allocation at
the same addresses in the site for the HP and the site for the CP. Of these areas, only
those that allow the loading of initial value data are allocated in the CP site.

svdfa CPCM 4096 -cmi -f 0x80000

svdfs CPCM CPCM1 128

svdfs CPCM CPCM2 128

0x
70

00
00

00

0x
72

00
00

00

0x
73

00
00

00

0x
74

00
00

00

CPCM

CM for CPU CM for XPU1

CPCM1 CPCM2

CM for
XPU2

CM for
XPU3

CP-side area definition operation HP-side area definition operation

svdfa CPCM 4096 -cmi -f 0x80000

svdfs CPCM CPCM1 128

svdfs CPCM CPCM2 128

6. ALLOCATOR

1-67

6.2 Value (VAL) Registration and Deletion
The allocator registers or deletes a constant called a value (VAL), which is common to all
programs. The svdfv and svdlv commands are used for VAL registration and deletion,
respectively.

7. LOADER

1-68

CHAPTER 7 LOADER

7.1 Linking and Loading

Object modules (.obj files) created by the shc command are linked by using the svload
command to integrate them into a single program, which is then loaded by using GLB,
IRSUB, and other items of allocator management information. The resulting load module is
then written to a backup file (see Figure 1-20).

Figure 1-20 Creating a Load Module and Backup File

Include file C source file

User library
Object file

Standard
library

Load module

RPDP library

Backup file Stack usage amount
information file

Librarian
(optlnk)

Compiler
(shc)

Linker
(optlnk)

Link

Load

Loader
(svload)

Internally started

Allocator

management
table

7. LOADER

1-69

7.2 Loader Operating Environment
With respect to the program to be entered into the loader, ensure that the load module
resulting from linkage in the loader satisfies the conditions described in Table 1-19.

Table 1-19 Conditions for Load Modules

Option
Load module

TEXT DATA BSS
Program registration > 0 ‒ ‒
Subprogram/built-in subroutine registration > 0 ‒ ‒ (*)
Data registration ‒ > 0 ‒

TEXT: Executable portion DATA: Data with initial value BSS: Area without initial value

‒: Can be processed when size = 0 or > 0
> 0: Error except when size > 0
(*) The BSS parts of subprograms are write-protected. Ensure that subprograms do not have BSS

parts.

Figure 1-21 shows the structure of a load module that is generated by the loader.

[1] text part data part

[2] text part

[3] GLB initial-value data

[4] text part data part bss part

Figure 1-21 Load Module Structure

Explanation of Figure 1-21:

[1] is a load module of a program or subprogram that has a text part and a data part.
This load module can be loaded as a program or subprogram.

[2] is a load module of a program or subprogram that has only a text part.
It can be loaded in the same way as [1].

[3] is a load module of a GLB initial-value settings program.
It can be loaded as data.

[4] is a load module of a program that has a text part, a data part, and a bss part.
It can be loaded as a program.
Ensure that subprograms do not have bss parts.

7. LOADER

1-70

(1) Loader processing
The following explains the loading process of the loader with reference to load module
structures [3] and [4] in Figure 1-21.

Figure 1-22 Loading Processing

Explanation of Figure 1-22:
[1] The global initial-value data section is loaded into a location corresponding to a

secondary partition area that is registered by svdfs in the allocator-managed table.
[2] The program is loaded, as a load module, into an area that is specified by the loader

command. The loader is stored in a backup file with a stack area specified by the
load module and the OS work area attached.

Object module
GLB initial-value data

glb1_g

Loader (object module link section)

glb1_g initial
value

Loader (backup file storage section)

glb1_g
initial value

Area-specific backup file Area-specific backup file

Loader

stack part text part data part bss part OS work area

text part data part bss part

text part data part bss part
text part data part

text part data part

7. LOADER

1-71

(2) Uniqueness of names
Between the system and user, the same name must not appear as a program name,
subprogram name, built-in subroutine name, global name, or value name.

(3) External reference checks for the system and users

User information cannot be referenced from the system.
System subprograms can only be referenced by users. Table 1-20 shows the possible
reference combinations.

Table 1-20 External Reference Combinations

Referenced

Referencing
Subprogram Global Value
S U S U S U

Program
S R ‒ R ‒ R ‒
U R R ‒ R ‒ R

Subprogram
S R ‒ R ‒ R ‒
U R R ‒ R ‒ R

Global
S (*1) ‒ (*2) ‒ (*3) ‒
U R (*1) ‒ (*2) ‒ (*3)

R: Can be referenced S: System ‒: Cannot be referenced U: User
(*1) An IRSUB number is embedded in the global area.

The subprogram must therefore be a built IRSUB.
(*2) The referenced global address is embedded in the global area.
(*3) The VAL value is embedded in the global area.

7. LOADER

1-72

7.3 Library Search Paths
The library search path of the loader (the library search sequence specified by the -l option)
follows with the sequence in which the system searches for the input file of the optimization
linkage editor in the shc compiler package.
The input file search sequence for the optimization linkage editor is as follows:
(1) Current directory
(2) Directory specified by HLNK_DIR in the RPDP operating environment setup file

Multiple paths can be set for HLNK_DIR in the RPDP operating environment setup file.
To specify multiple paths, separate them with semicolons.

7.4 Notes on Linking and Loading

When linking and loading real-time programs, make sure that the GLB, CM, and VAL used in
them have been allocated. When using IRSUBs, make sure that they have been built.

8. BUILDER

1-73

CHAPTER 8 BUILDER

8.1 Registering and Deleting Tasks

8.1.1 About tasks

A load module that has been loaded by the loader (svload) can be used to create a task via
the svctask command of the builder to prepare for operations. svctask creates task
information that specifies a task name, task number, task execution level, and other
parameters. svctask then combines this task information with the task information
managed by the operating system.

8.1.2 Registering a task

The following is an example of registering a program as a task.

The string sample specified in svctask is the name of the load module to be used as a
resource for the task. When the task is started, the specified load module is run as the main
program of the task.
In this example, the priority of the task is 25, and the task number is 10.
After a task is created, use the task number or task name to identify the task.

$ svdfa area1 0x3000 -p
$ shc sample.c
$ svload +P -w 1024 1024 -a area1 -o sample sample.obj
$ svmap -p -t
** allocator map ** 2018/02/07 15:20:38

 site name = 0001cp

< task-program >
 tn tname tnox rmtn lvl sp pname st mtn texttop
lastaddr tsize dsize ssize (part) bsize extra oswork

 :
 sample + u ls 0001 30034000
30037000 0000f4 000022 000400(000400) 000000 000000 001000

 :
** map output end **
$ svctask sample sample_1 10 -l 25
$ svmap sample_1 -t
** allocator map ** 2018/02/07 15:21:38

 site name = 0001cp

< task-program >
 tn tname tnox rmtn lvl sp pname st mtn texttop
lastaddr tsize dsize ssize (part) bsize extra oswork

 :
 10 sample_1 + u 000a 0001 19 30036000 sample . u cs 0001 30034000
30037000 0000f4 000022 000400(000400) 000000 000000 001000
 :
** map output end **
$

8. BUILDER

1-74

8.1.3 Deleting a task
To delete a registered task, use svdtask. Specify the name of the task to be deleted for
svdtask. The following is an example of deleting a registered task.

$ svdtask sample_1

$ svmap sample_1 -t

** allocator map ** 2018/02/07 15:21:09

 site name = 0001cp

< task-program >

** map output end **

 svmap : Specified name is undefined (sample_1)

$ svdload sample +P

$ svdla area1

$

8. BUILDER

1-75

8.2 Registering and Deleting a Resident Subprogram

8.2.1 About indirect link subprograms (IRSUBs)

An indirect link subprogram does not require task re-registration, even if it is replaced after
task registration.
An indirect link subprogram is created in the same way as a subroutine of a program. Unlike
a subroutine, an indirect link subprogram is shared by multiple tasks, so it must be re-
entrant. For this reason, do not declare static variables in indirect link subprograms.

When an indirect link subprogram is registered again, only the address corresponding to the
registered number changes. Tasks need not be registered again, even if they were registered
before the re-registration of indirect link subprograms.

8.2.2 Registering an indirect link subprogram (IRSUB)

After using the loader (svload) to load an executable module, register the executable
module by using the builder (svbuild).

The following is an example of registering a program as an indirect link subprogram
(IRSUB).

Create an indirect link subprogram. Use Notepad or another text editor.

 $notepad sub_a.c

 sub_a()
 {
 return;
 }

Compile the indirect link subprogram.

 $shc sub_a.c

Register the indirect link subprogram in the split area named areal using the registration number 10.

 $ svdfa area1 4096 -s
 $ svload +I -a area1 -o sub_a sub_a.obj -w 0
 $ svbuild sub_a -ir -e 10
 $ svmap sub_a -s -ir

 ** allocator map ** 2018/02/07 15:21:09

 site name = 0001cp

 < IRSUB >
 irno entname st laddr subname offset texttop bsslast tsi
 ze dsize bsize extra ssize (part)
 10 sub_a + u ib 60010000 sub_a 000000 + u 60010000 60010004 000
 004 000000 000000 000000 000000(000000)

 ** map output end **

8. BUILDER

1-76

8.2.3 Deleting an indirect link subprogram (IRSUB)
To delete a registered indirect link subprogram (IRSUB), use svdbuild. Specify the name
of the subprogram to be deleted and the -ir option for svdbuild.

The following is an example of deleting a registered indirect link subprogram.

$ svdbuild sub_a -ir
$ svdload sub_a +I
$ svmap -s -ir
** allocator map ** 2018/02/07 15:21:09

 site name = 0001cp

< IRSUB > [max_entry= 8191, use_entry= 256]

** map output end **
$

8. BUILDER

1-77

8.3 Registering and Deleting a Built-in Subroutine

8.3.1 About built-in routines

This section describes built-in subroutines. Built-in subroutines can be incorporated into the
system to run user-specified processing in place of the standard error handling of the OS
whenever a hardware-detected exception or software-detected event occurs.

Built-in subroutines are loaded in by the loader (svload) and incorporated by the builder
(svbuild) as part of the event-handling programs supported by the operating system.

In this system, some entry points for incorporating built-in subroutines are provided.
Different points are associated with different events. When incorporating built-in
subroutines, select entry points according to the events by which their processing is initiated.

Up to four built-in subroutines can be registered for incorporation at each entry point. When
an event occurs, the registered built-in subroutines are called and run sequentially in
ascending order of their entry numbers. In this way, entry numbers specify the order in
which registered built-in subroutines are run. However, entry numbers 1 and 2 are reserved
for the OS and NXACP. Use entry numbers 3 and 4 for user programs.

To use the structure defined by the CPMS within a built-in subroutine, specify a CPMS
include file at the time of compiling. For details, see Setting up the interface used with the
CPMS in 4.1 Details of C Compiler Options.

8. BUILDER

1-78

8.3.2 Registering a built-in subroutine
The following is an example of registering a built-in subroutine. In this example, the
program named uabs_usr is a subroutine that is run when a task is aborted. Register the
subroutine at the entry point that has the point name ABS. To link and load the built-in
subroutine, use the loader (svload) with the +U option specified.

8.3.3 Deleting a built-in subroutine

To delete a registered built-in subroutine, use svdbuild. Specify the name of the
subroutine to be deleted, the entry point name, and the -ul option for svdbuild.
The following is an example of deleting a registered built-in subroutine.

 $ shc uabs_usr.c

Register a built-in subroutine.

 $ svdfa area1 4096 -s
 $ svload +U -a area1 -o uabs_usr uabs_usr.obj -w 512
 $ svbuild uabs_usr ABS 3 -ul
 $ svmap -s -ul
 ** allocator map ** 2018/02/07 15:21:09

 site name = 0001cp

 < ULSUB >
 pnt typ ent subname texttop bsslast tsize dsize bsize extra
 ssize (part)
 abs os 1 . ulsubabs . s 60000000 60000499 0003cc 0000c9 000000 000000
 000080(000080)
 abs user 1 + uabs_usr + u 60100000 60100004 000004 000000 000000 000000
 000200(000200)

 ** map output end **
$

$ svdbuild uabs_usr ABS -ul
$ svdload uabs_usr +U
$ svmap -s -ul
*** allocator map ** 2018/02/07 15:21:09

 site name = 0001cp

< ULSUB >
 pnt typ ent subname texttop bsslast tsize dsize bsize extra
 ssize (part)
 abs os 1 . ulsubabs . s 60000000 60000499 0003cc 0000c9 000000 000000
 000080(000080)

** map output end **
$

9. MAP

1-79

CHAPTER 9 MAP

9.1 Purpose of Displaying Allocator Management Table Information

Allocator management table information is displayed to help users develop real-time
programs smoothly.

 Information on the storage areas for tasks, subprograms, GLB, and other shared resources is

displayed to support the creation of individual programs and the development of system
design.

 Allocator management table information in the system that has been loaded in the S10VE is
displayed to support debugging.

9. MAP

1-80

9.2 svmap Command Options and Displayed Information
The display format for each option of the svmap command is shown in APPENDIX F MAP
DISPLAY FORMAT. The underlined portions within the display formats are the data
displayed by the svmap command.

9.2.1 Map information that is output

The following map information is output:
(1) Map information about resources managed by the development machine
(2) Map information about resources downloaded to the S10VE

9.2.2 Description of output map information

The following information is output as map information:
(1) Header and footer
(2) Global area information
(3) Split area information
(4) Secondary partition area information
(5) Program information
(6) Subprogram information
(7) Task information
(8) Global information
(9) VAL information
(10) IRSUB entry information
(11) IRGLB entry information
(12) ULSUB entry information
(13) Information about how much physical memory is available

9.2.3 Map information output format

Map information can be output in the following formats:
(1) Hierarchical map output
(2) Address-order list output
(3) Name-order list output
(4) Numerical-order list output
(5) Specified name output

The hierarchical map output format is used to hierarchically output map information about
resources arranged in a logical space for individual global or split areas.
The listing output formats are used to output specified information in address order, name
order, or numerical order.
The name of a resource can also be specified to output information about that name.
Table 1-21 shows the combinations of output information and selectable output formats.

9. MAP

1-81

Table 1-21 Combinations of Output Information and Selectable Output Formats

Output format

Output content

Hierarchical
output

Address-order
output

List-order
output

Numerical-
order output

Specified
name output

Global area information Y Y ‒ ‒ Y
Split area information Y Y Y ‒ Y
Secondary partition area
information

Y Y Y ‒ Y

Program information ‒ ‒ Y ‒ Y
Subprogram information ‒ ‒ Y Y Y
Task information ‒ ‒ Y Y Y
Global information ‒ ‒ Y Y Y
VAL information ‒ ‒ Y ‒ Y
IRSUB entry information ‒ ‒ Y Y Y
IRGLB entry information ‒ ‒ Y Y Y
ULSUB entry information ‒ ‒ Y Y Y

Y: Can be specified ‒: Cannot be specified

9. MAP

1-82

9.3 Logical Address Specification and Information Displayed by the svadm Command
The svadm command displays a name and other information for the specified logical address.
An address can be specified by using a command or by using an interactive interface. The
information that is displayed is useful when debugging.

(1) Specifying an address by using a command

svadm logical address
When a logical address is specified in the parameter, the name and other information are
displayed in the following format, where the uppercase Xs represent the data displayed by
the svadm command.

name = XXXXXXXX type = XXXXXXXXXXX raddr = XXXXXXXX

(2) Specifying an address by using the interactive interface

When a logical address is not specified in the parameter, the user is prompted to enter the
logical address. The name and other information are displayed in the same format as when
using a command.

#svadm

++ address information display start --> site(XXXXX) ++
addr : addr

 Displayed information

addr : q
++ address information display end ++

Specifying an address by using the interactive interface

10. STARTUP AND PU CONTROL

1-83

CHAPTER 10 STARTUP AND PU CONTROL

10.1 Overview

To enable S10VE startup by using the RPDP, use the svrpl command to download the
initial data file (backup file) stored in the S10VE main memory (SDRAM) on the
development machine to the S10VE main memory.
As shown here, the backup file created by the OS and the allocator is downloaded to the
main memory of the specified site (PU) of the S10VE to start the specified site (PU).
It is not possible, however, to start an S10VE by using the svrpl command if the OS has
never been downloaded via the CPMS download of the BASE SYSTEM/S10VE to that
S10VE. Load the OS via the CPMS download of the BASE SYSTEM/S10VE first.
PU control of the S10VE controls the status of the specified site (PU) after startup.
When the CPU name (the same name as for the CP site name) is specified as a site name, the
CPU is processed in the CP and HP sites. If the HP site name is specified as a site name, an
error occurs.

Figure 1-23 S10VE Startup from a Development Machine

 Tasks
 Subroutines
 Global data
 CM data

: OS

: Backup file

Development machine

LAN (Ethernet)

CPU

I/O

S10VE

SDRAM

CP HP

CPU

HP CP

10. STARTUP AND PU CONTROL

1-84

10.2 Basic Concept of Startup and PU Control
The following is a basic overview of startup and PU control processing.
Overall control of the S10VE is shown in the following figure. There are two cores in the
CPU (CP and HP), and these cores control sites independently. However, because startup
and PU control are performed by the CPU, the CP site is specified to perform processing.

Figure 1-24 Concept of Overall Control of the S10VE

CPU module

Development
machine

Network

CP

HP

10. STARTUP AND PU CONTROL

1-85

10.3 Startup and PU Control Procedure
The svrpl command and the svcpuctl command are used for startup and PU control of
the S10VE. The following describes the startup and PU control procedure.

(*1) Startup when the svrpl command is used

(*2) PU control when the svcpuctl command is used

Backup file download and startup

Has OS been loaded from
BASE SYSTEM/S10VE?

OP loading via CPMS download of
BASE SYSTEM/S10VE

Will you control PU status?

PU control

Yes

No

Yes

No

(*2)

(*1)

10. STARTUP AND PU CONTROL

1-86

10.4 Startup and Stop Types
Table 1-22 lists the eight startup and stop types of the S10VE.

Table 1-22 Startup and Stop Types

No. Type Start/stop category
1 IPL start

Start
2 Online restart
3 Reset start
4 Power-recovery start
5 ROM start
6 Power-off stop

Stop 7 STOP request stop
8 ERROR STOP

The details of 1 through 8 are described in the following (1) to (8).

The following describes the startup types of the S10VE.
(1) IPL start (including GLB-save IPL start)

The svrpl command is used for an IPL start.
Download the OS and the backup files (tasks, subroutines (IRSUBs and built-in
subroutines), and GLB and CM data), and then start the S10VE. The period from the end
of the download until the activation of the initial start task is called an IPL start.
There are four download types with respect to the OS and backup files (see the
following). LADDER and HI-FLOW programs are not downloaded by the svrpl
command.
• Downloads of the OS, tasks, subroutines (IRSUBs and built-in subroutines), and GLB

and CM data

(2) Online restart (power-recovery fast restart, reset fast restart)

Online restart starts when either of the following events occurs:
• When power is recovered after a power failure stop (power-recovery fast restart)
• When a CPU RUN request is generated after stopping upon a CPU STOP request (reset

fast restart)
At this time, S10VE processing restarts from the processing at the time when the power
failure or the CPU STOP request occurred. Online restart processing covers the period
after a CPU RUN request is generated until activation of the initial start task. (At this
time, downloading to the S10VE from the development machine is not performed.) I/O
units are initialized by the time the initial start task is activated, changing all tasks to the
DORMANT state.

(3) Reset start

Reset start begins when a CPU RUN request is generated after an error stop due to a CPU
shutdown. The OS data with initial values is returned to the post-IPL state, and
processing begins from post-IPL processing. Reset start processing covers the period
after a CPU RUN request is generated until activation of the initial start task. (At this
time, downloading to the S10VE from the development machine is not performed.)

10. STARTUP AND PU CONTROL

1-87

(4) Power-recovery start
A power-recovery start commences when a power-on reset occurs after an error stop due
to a CPU shutdown. OS data with initial values is returned to the post-IPL state, and
processing begins from post-IPL processing. Power-recovery start processing covers the
period from power recovery until activation of the initial start task. (At this time,
downloading to the S10VE from the development machine is not performed.)

(5) ROM start

The OS, programs, and data are loaded from the ROM, and then the S10VE is started.
LADDER and HI-FLOW programs are loaded in addition to tasks, subroutines (IRSUBs
and built-in subroutines), and GLB and CM data.

The following describes the stop types of the S10VE.

(6) Power-off stop
The S10VE stops due to the power turning off (including power failures). Active tasks
stop without being aborted. The CPU stops without closing open I/O units. During a
power-off stop, when the S10VE is turned on, a ROM start is performed if data is saved
in the ROM.

(7) STOP request stop

The S10VE stops upon receiving a CPU STOP request. Active tasks stop without being
aborted. The CPU stops without closing open I/O units.
The CPU and I/O units remain on.
An online restart (reset fast restart) is performed when a CPU RUN request is received.
After a CPU STOP request stop, if power is restored, a ROM start is performed.

(8) ERROR STOP

The S10VE stops when a fatal hardware or software error occurs. The CPU and I/O units
remain on.
To restart the S10VE, turn off the power and then turn it on again (power-recovery start),
issue a CPU STOP request and then issue a CPU RUN request for a reset start, or
perform an IPL start (OS download). When memory data is cleared at power-recovery
start, a ROM start is performed.

10. STARTUP AND PU CONTROL

1-88

CPU STOP request
The following events occur with a CPU STOP request:
• Setting the CPU RUN/STOP switch to STOP
• Receiving a STOP interrupt upon a CPU STOP request from the svrpl or
svcpuctl command

CPU RUN request

The following events occur with a CPU RUN request:
• Setting the CPU RUN/STOP switch to RUN
• Transmitting a CPU RUN request after a CPU RUN request from the svcpuctl

command or a download by the svrpl command

10. STARTUP AND PU CONTROL

1-89

10.5 PU State Transitions
Figure 1-25 shows the PU state transitions.

(*1) When the memory is backed up in the ROM, data is downloaded from the ROM to the memory. If the memory is not backed up

in the ROM, data is downloaded from the development machine to the memory over the network.
(*2) The CP continues operating even during an HP stop. In the ERROR RUN state, only the CPMS of the HP stops. In this case,

after both processors transition to the CPU STOP state, a CPU RUN request can be received.

Figure 1-25 PU (OS Startup/Stop) State Transitions

Power OFF
(memory volatile)

Power
recovery

Power
failure

RUN request

#1

Download

STOP
(memory cleared)

RUN

System down
(CP down)

STOP request

Power

ERROR STOP
(memory retained)

#2

System down
(HP down)

Power

STOP
(memory retained)

STOP request
(including power
failure notice)

ERR LED lit,
RUN request

STOP
request

ERROR RUN
(memory retained)

ERR LED blink

Power
failure

10. STARTUP AND PU CONTROL

1-90

10.5.1 Startup procedure
As described in section 10.3, startup is performed by running the svrpl command from
the development machine.
For the procedure to be performed on the development machine, see CHAPTER 7
STARTUP AND PU CONTROL in PART 2 COMMAND REFERENCE. The following
describes the main functions and uses.
Functions

The main functions of the svrpl command are as follows:
• The command starts the specified site or the specified unit (all sites in the S10VE unit).
• The command downloads the OS and backup files.

You can specify an option for the svrpl command to separate the files to be
downloaded. Table 1-23 lists the files that are downloaded according to the specified
options.

Table 1-23 Download Options

Option

File
-all

No option
specified

OS Y Y
• Task
• Subroutine
• GLB

Y Y

CM Y Y

Y: Downloaded ‒: Not downloaded

• The command specifies whether to set the CPU time at startup.
• The command specifies whether to start the PU after the OS and backup files have

been downloaded.
• The command stops the PU without receiving a PU startup or stop confirmation

response (as to whether the PU can be stopped) during execution of the svrpl
command.

10. STARTUP AND PU CONTROL

1-91

The following are some startup examples in which the various command functions are
applied.
 Downloading the OS and all backup files to the CPU, setting the time, and then starting

the CPU

>svrpl -u 0001cp
**** svrpl start (site = 0001cp) ****
All PU status CPU(0001cp)=RUN
Do you stop CPU(0001cp) ? (yes/no)= yes
Remote loading start(site = 0001cp)
address : 0X0400d100-0X0400d8ff
.
address : 0X0400d000-0X0400d0ff
.
address : 0X041f0000-0X0435ffff
....
address : 0X0437f000-0X0437fe57
.
address : 0X04d80000-0X0557ffff,0X07500000-0X0927ffff
.......................................
address : 0X0400c100-0X0400c8ff
.
address : 0X04080000-0X041effff
....
address : 0X0437e000-0X0437ee57
.
address : 0X06780000-0X074fffff
.......................................
start to modify allocator management tables

finished to modify allocator management tables
Remote loading end
Please wait 84 seconds for ROM-SAVE
Reset start CPU(0001cp)
**** svrpl end ****

>

 Downloading the OS and all backup files to the CPU, setting the time, and then starting

the CPU without receiving a PU stop confirmation response
(No message appears when the -s option is specified and no confirmation response is
received.)

>svrpl -u 0001cp -s

CPU CP (site name = 0001cp)
CPU HP (site name = 0001hp)

Mounted PU

10. STARTUP AND PU CONTROL

1-92

10.5.2 PU control procedure
PU control is performed by running the svcpuctl command from the development
machine. For the procedure to be performed on the development machine, see CHAPTER
7 STARTUP AND PU CONTROL in PART 2 COMMAND REFERENCE.
The following describes the main functions and uses:
Functions

The main functions of the svcpuctl command are as follows:
• The command controls the PU state (running or stopped).
• The command sets the CPU time when a run request is received.
• The svcpuctl command runs without acknowledging whether the PU is to be started

or stopped (whether it is all right to begin execution).
• The command displays the site status.

10. STARTUP AND PU CONTROL

1-93

The following are some startup examples in which the various command functions are
applied.
 Setting the CPU time and issuing a run request to the CPU simultaneously

>svcpuctl -u 0001cp -time

All PU status CPU(0001cp)=STOP
Input CPU(0001cp) status ? (stop/run)= run
Do you really request OK ? (yes/no)= yes
CPU(0001cp) = RUN

 Issuing a stop request to the CPU

>svcpuctl -u 0001cp

All PU status CPU(0001cp)=RUN
Input CPU(0001cp) status ? (stop/run)= stop
Do you really request OK ? (yes/no)= yes
CPU(0001cp) = STOP

 Issuing a run request to the CPU without acknowledging whether to stop a PU, and

setting the CPU time
(When the -s option is specified to skip the acknowledgment sequence, no message is
output to the display.)

#svcpuctl -u 0001cp -s -run -time

 Displaying the CPU status

#svcpuctl -u 0001cp –ss

PU status CPU(0001cp)=STOP

CPU CP (site name = 0001cp)
CPU HP (site name = 0001hp)

Mounted PU

CPU CP (site name = 0001cp)
CPU HP (site name = 0001hp)

Mounted PU

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-94

CHAPTER 11 svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT
FUNCTIONS

11.1 Overview

svdebug is a command that enables the debugging of programs running on the S10VE
from the development machine. The command has the following basic functions:

Classification Subcommand Function

Task starting or
stopping

qu
ab
re
ta
su
rs
tm
ct
sht

Requests that a task be started.
Prevents tasks from being started.
Cancels the prevention of task startup.
Displays task status information.
Suppresses task execution.
Cancels suppression of task execution.
Starts a task cyclically.
Cancels cyclic task startup.
Displays cyclic task startup.

Memory printing or
patching

md

sd

bs
bg
mcp
mmv
mf

Displays or modifies the contents of memory in accordance with a
specified address.
Displays or modifies the contents of memory in accordance with a
specified name.
Sets data in specified bit positions.
Displays the data that exists in specified bit positions.
Copies the contents of memory.
Moves the contents of memory.
Sets pattern data in the memory.

System error display el
ss

Displays error logs (runs the svelog command).
Displays system status information (runs the svcpuctl command).

Current time setting
or display

st
gt

Sets the current time.
Displays the current time.

Breakpoint setup and
resetting

br or stickybr
rb
rd
rr
go

Sets or displays breakpoints.
Resets breakpoints.
Displays registers.
Changes the contents of registers.
Resumes execution from a breakpoint.

Uploading,
downloading, or
comparisons

ld
sv
cm

Transfers backup file data to the controller memory.
TransfersS10VE memory data to a backup file.
Compares the contents of a backup file with those of the memory in the
S10VE.

Enabling or disabling
DHP logging

dr
ds

Enables DHP logging (runs the svdhp command).
Disables DHP logging (runs the svdhp command).

Ladder debug
functionality

lbr
lrb
lrd
lrr
lgo
s

Sets and displays breakpoints.
Resets breakpoints.
Displays registers.
Rewrites the contents of registers.
Resumes execution from a breakpoint.
Runs steps.

Other si
sp
ps
pe
ver
svadm
svdhp
help
q
!

Initializes the stack.
Displays the amount of stack use.
Starts displaying debug statements.
Stops displaying debug statements.
Displays the version of the CPMS.
Displays information about addresses (runs the svadm command).
Displays the DHP (runs the svdhp command).
Displays a list of subcommands.
Terminates the debugger.
Runs a command on the development machine.

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-95

11.2 S10VE Status and Subcommand Availability
Whether subcommands can be run depends on the state of the S10VE. The following table
lists the S10VE states and whether subcommands can be run in each state.

Classification Subcommand POFF STOP RUN
ERR RUN
(HP stop)

ERR
STOP

Task starting or stopping qu, ab, re, ta, su, rs, tm, ct, sht ‒ ‒ Y Y (*6) ‒

Memory printing or
patching

md, sd, bs, bg, mcp, mmv, mf ‒ (*1) Y Y Y Y

System error display el, ss ‒ Y Y Y Y

Current time setting or
display

st, gt ‒ ‒ Y Y (*6) ‒

Breakpoint setup and
resetting

br, rb, rd, rr, go ‒ ‒ (*5) Y Y (*6) ‒

Uploading, downloading,
or comparisons

ld, sv, cm ‒
C

(*7)
C

(*2)
Y (*2) (*6) C (*7)

Enabling or disabling DHP
logging

dr, ds ‒ ‒ Y Y (*6) ‒

Ladder debug functionality lbr, lrb, lrd, lrr, lgo, s ‒ ‒ Y ‒ ‒

Other

si, sp, ps, pe ‒ ‒ Y Y (*6) ‒

svdhp ‒ ‒ (*3) Y Y (*6) ‒ (*3)

ver ‒ (*4) Y Y Y(*6) Y

svadm, help, q, ! Y Y Y Y Y

Y: Available ‒: Unavailable C: Available when communication is enabled
(*1) Backup files can be printed and patched.
(*2) The following option functions are available only when the S10VE is in the STOP state:

ld: -cm
(*3) When the S10VE is not in the CPU RUN state, DHP can be collected by using svhidas.
(*4) Information about the development machine can also be shown in the CPU STOP state.
(*5) Settings can also be shown in the CPU STOP state.
(*6) These subcommands cannot be run in the HP site.
(*7) The ld -g subcommand can also be run in the CPU STOP state.

State Description
POFF S10VE power-off state
STOP OS, middleware, and application stop state
RUN OS, middleware, and application run state
ERR RUN Stop state due to an HP error
ERR STOP Stop state due to a CP error

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-96

svdebug provides the aforementioned functions in the form of subcommands. When
svdebug is started, a prompt is displayed together with the target site name. You can check
the current site to be debugged from the site name. At the prompt, enter an appropriate
subcommand to begin debugging. To stop debugging, enter the q subcommand. svdebug
will then terminate. An example is as follows:

$ svdebug
++ debugger start ++
0001cp> q
++ debugger end ++

Access to real-time resources is restricted by the owner type and user type. Set the
appropriate user type before starting svdebug.
Most functions are available while the OS of the S10VE is running, but some functions are
available even when the OS of the S10VE is not running.
You can suspend the processing of the svdebug subcommands by pressing Ctrl+C.

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-97

11.3 Basic Functions
(1) Subcommands to download and upload programs and data

The allocator, loader, and builder (ALB) incorporate programs and data into backup files.
The contents of backup files need to be reflected in the S10VE memory in some way.
The ld subcommand can be used to load the contents of backup files into memory in the
S10VE, and the sv subcommand to upload the contents of the S10VE main memory to
backup files. The cm subcommand can also be used to compare the contents of the
backup file and the corresponding main memory.

In the following example, the status of a task that has task number 5 (tn=5) is checked
and the contents of the main memory of the controller are updated. GLB (with the name
indata) is also updated.

$ svdebug
++ debugger start ++
0001cp > ta 5
tn=5 (0x05) tname=ta5 task state=DORMANT (0x00000000)
tcb top=0x841e1aac fact=0x00000000 level=27 (27)
task top=0x3006b000 stack=0x3006c000-0x3006cfff

0001cp > ld -t ta5
address: 0x20000140-0x2000017f
address: 0x3006b000-0x3006b1f7
address: 0x20000140-0x2000017f
0001cp > ld -g indata
address: 0x50050000-0x50050fa0
0001cp >

As described here, ALB operations are not reflected directly in the S10VE, which means
that there might be a mismatch in the backup files between the development machine and
the S10VE.

 Main memory image files are present in the backup file on the development machine

but not on the S10VE.
This occurs when the main memory image files were registered with ALB, but were
not incorporated by the svrpl command or by the ld subcommand of the svdebug
command.

 Main memory image files are present both in the backup files on the development
machine and on the S10VE.
There are two possible states: (1) identical main memory image files are present on the
development machine and S10VE, and (2) different main memory image files are
present on the development machine and S10VE. In state (1), the main memory image
files that were registered with ALB were only incorporated by the svrpl command or
by the ld subcommand of the svdebug command. In state (2), main memory image
files are registered and deleted repeatedly with ALB.

 Main memory image files are not present in the backup files on the development
machine but are present on the S10VE.
This occurs when the main memory image files were registered with ALB and
incorporated by the svrpl command or by the ld subcommand of the svdebug
command, and the relevant files were then deleted with ALB.

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-98

 Main memory image files are not present either in the backup file on the development
machine or on the S10VE.
This occurs when the main memory image files that were registered with ALB and
incorporated by the svrpl command or by the ld subcommand of the svdebug
command were then deleted with ALB, and the main memory image files were deleted
from the S10VE.
The states of the development machine and S10VE can be checked by using the
svmap command or the ld subcommand of the svdebug command. Match the states
as needed by using the svrpl command or the ld subcommand of the svdebug
command. In particular, when resources are deleted from the development machine,
make sure that they are also deleted from the S10VE.

(2) Task control subcommands

In general, a program downloaded to the S10VE starts when it receives a start request
from another task. For convenience during debugging, however, tasks can be started or
stopped according to the operator's instructions. svdebug supports subcommands that
start or stop tasks.

In the following example, a task that has task number 5 (tn=5) starts while its status is
being checked.

$ svdebug
++ debugger start ++
0001cp > ta 5
tn=5 (0x05) tname=ta5 task state=DORMANT (0x00000000)
tcb top=0x841e1aac fact=0x00000000 level=27 (27)
task top=0x3006b000 stack=0x3006c000-0x3006cfff

0001cp > re 5
 OK (0)
0001cp > qu 5
 OK (0)
0001cp > ta 5
tn=5 (0x05) tname=ta5 task state=IDLE (0x00000000)
tcb top=0x841e1aac fact=0x00000000 level=27 (27)
task top=0x3006b000 stack=0x3006c000-0x3006cfff

0001cp >

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-99

(3) Memory printing and patching subcommands
svdebug supports subcommands that display or change the contents of memory. These
subcommands can be used to perform testing while changing the contents of memory
such as GLB to desired values.
Main memory, the backup files, or both can be specified for patching or display purposes.
In the following example, a task is started that sets data in GLB containing input data
(named indata), processes the data, and writes the resulting data to GLB (named
outdata). Finally, the task checks the processing results.

$ svdebug
++ debugger start ++
0001cp > sd
1 name : indata -g
2 storage (s,m,*) : m
3 baddr : 0
4 raddr : 0
0x50050000(0x000000) 00000000 : 0x1000
0x50050004(0x000004) 00000000 : e
4 raddr : *1
1 name : indata -g
2 storage (s,m,*) : m
3 baddr : 0
4 raddr : 0
0x50050000(0x000000) 00001000 :
0x50050004(0x000004) 00000000 : e
4 raddr : e
0001cp > qu test
 OK(0)
0001cp > sd
1 name : outdata -g
2 storage (s,m,*) : m
3 baddr : 0
4 raddr : 0
0x50051000(0x000000) 00002000 : e
4 raddr : e
0001cp >

(4) Time setting and time display subcommands

The S10VE has a built-in clock. svdebug can also be used to set a time in the built-in
clock. In the following example, the time currently set in the S10VE is checked and then
changed.

$ svdebug
++ debugger start ++
0001cp > gt
2018.02.07.20:27:32
0001cp > st 2018.02.07.20:30:00
OK(0)
0001cp >

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-100

(5) System error display and system status display subcommands
During testing or debugging, you might need to reference the system status or a system
error. RPDP supports commands that display system errors or the system status (svelog
and svcpuctl). svdebug can start these commands as subcommands (el and ss).

(6) Subcommands for enabling, disabling, and displaying DHP logging

The S10VE provides a debugging helper (DHP) function to support debugging. The DHP
function can be used to analyze the operation of the operating system and user tasks.
RPDP supports a command that displays DHP traces, enables DHP logging, and disables
DHP logging (svdhp). svdebug can start these commands as subcommands (svdhp).

(7) Other subcommands

In addition to the preceding subcommands, other subcommands are also supported.
The si and sp subcommands simplify the determination of the capacity of the stack
used during task execution.
The svadm subcommand finds the SAREA name and IRSUB name corresponding to an
address.
The ! subcommand can be used to run commands on the development machine without
having to terminate svdebug.
The help subcommand displays simple explanations.

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-101

11.4 Other Functions
svdebug supports command line options for users' convenience. The following options can
be used to tailor the operation of svdebug.

-i: Outputs keyed-in data to the output file. The output results of subcommands are not

logged.
-o: Outputs the date and results of operations to the specified file.

This option is useful for logging the operations performed by a user.
-r: Runs subcommand lines in the specified command file.

This option is useful for performing a sequence of operations by using a single
operation.
The file created with the -i option specified can be used as an input.

-s: Directly runs the subcommand specified in this option.
This option is useful for creating command procedures.

-u site: Specifies the name of the site to be processed by the debugger.

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-102

11.5 Debug Support Commands

11.5.1 svelog command
The svelog command fetches the error log from the error log buffer in the S10VE over
the network, and displays error log entries sequentially from the most recent error.
For each error, the error log shows (1) the time that the error occurred; (2) the error code
indicating the cause of the error (EC); (3) the task number of the task that caused the error
(TN); (4) the contents of the program counter that indicates the location of the error (PC);
(5) iarv0 to iarv8 and iarvn1 to iarvn8 (contents of the program around the
location indicated by the PC); which indicates processing that would have been performed;
and (6) other information. This command also displays register information and DHP
traces to allow for more detailed analysis.
The following are some examples of typical operations.

Example 1:

Displaying the error log at the site named 0001cp in simplified format

svelog -u 0001cp -f s

Example 2:

Displaying all error log entries at the site named 0001cp

svelog -u 0001cp -f m

Even when the -f m options are omitted, the same result is obtained.

Example 3:
Displaying the error log and DHP traces at the site named 0001cp

svelog -u 0001cp -f l

Example 4:

Displaying the error log and DHP traces at the site named 0001cp and storing the
information displayed on the screen in the file named “abc”

svelog -u 0001cp -f l -o abc

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-103

11.5.2 svdhp command
The svdhp command fetches the current DHP trace from the DHP trace buffer in the
S10VE over the network and displays the trace.
The displayed DHP trace includes the DHP logging time, DHP trace points, and data
required for analysis. The command also stops or restarts DHP logging.
The following are some examples of typical operations.

Example 1:

Displaying DHP traces at the site named “0001cp” for the specified number of counts
(10)

svdhp -u 0001cp +10

If a count (+10 in this example) is omitted, all DHP traces are displayed.

Example 2:

Stopping DHP logging at the site named “0001cp”

svdhp -u 0001cp -off

Example 3:

Restarting DHP logging at the site named “0001cp”

svdhp -u 0001cp -on

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-104

11.5.3 svcpunow command
The svcpunow command displays the load ratio of the S10VE at the specified site (PU).
The load ratio is the percentage of the time from the start to the end of measurement during
which the PU is used for program executions (total execution time).

The following is an example of a typical operation.

Example: Displaying the load ratio measured over 10 seconds at the site named “0001cp”

#svcpunow -u 0001cp -t 10
2018/02/07 09:56:00 SITE=0001cp ** 10 second wait **
CPU(0001cp) load ratio = 12.34%

 (*1) (*2) (*3)

Note: The underlined text indicates the portion that is entered by the user.
(*1) PU name
(*2) Site name
(*3) PU load ratio

If the measurement time (specified by -t 10 in this example) is omitted, the load ratio
measured over one second is displayed.

Measurement time (in seconds)

Start of measurement End of measurement

Time

Idle time

Load ratio (%) = execution time / measurement time

Execution time

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-105

11.5.4 svtimex command
The svtimex command displays activity information for a task registered in the S10VE.
The activity information consists of the PU load ratio of the task, the number of executions,
execution times, and the average execution time.

The following are some examples of typical operations.

Example 1: Measuring the activity of the following task for 10 seconds:
Task name = taska, task number = 123

#svtimex -u 0001cp taska -t 10

2018/02/07 09:56:00 SITE=0001cp ** 10 second wait **

taska(123) load ratio=3.00% execute count=10 total time=0.030sec average time=0.003sec

 (*1) (*2) (*3) (*4) (*5)

Note: The underlined text indicates the portion that is entered by the user.
(*1) Task name (task number)
(*2) PU load ratio of the task
(*3) Number of task executions
(*4) Total task execution time
(*5) Average PU execution time of the task

If a measurement time (such as -t 10) is not specified, the load ratio is measured over one
second.

Measurement time (seconds)

Start of measurement End of measurement

Time

PU load ratio (%) = total task execution time / measurement time
Average PU execution time of task = total task execution time / number of task executions

Task execution time

11. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS

1-106

Example 2: Measuring the activities of the following tasks over 3,600 seconds by using the
interactive interface:
Task name = taska, task number = 123
Task name = taskb, task number = 124
Task name = task22c, task number = 111

#svtimex -u 0001cp

SITE=0001cp Task measuring period[sec] = 3600

Task name or number = taska

Task name or number = taskb

Task name or number = 111

Task name or number = Enter (specify nothing)

2018/02/07 13:30:24 SITE=0001cp ** 3600 second wait **

taska(123) load ratio=3.00% execute count=36000 total time=108.000sec average time=0.003sec

taskb(124) load ratio=2.50% execute count=18000 total time=90.000sec average time=0.005sec

task22c(111) load ratio=0.01% execute count=360 total time=0.360sec average time=0.001sec

Note: The underlined text indicates the portion that is entered by the user.

PART 2 COMMAND REFERENCE

1. COMPILER

2-2

CHAPTER 1 COMPILER

Name
svdatagen

Syntax
svdatagen [-u site] file

Description

The svdatagen command generates a binary file of loadable initial-value data in a GLB
backup file by using the loader (svload).
The name of the generated binary file is output by using the input file name and changing its
suffix to .bin. If the input file name has no suffix, a binary file is generated by using the name
of the input file and the suffix .bin.

Arguments
-u site: Specifies the site name to reference when address resolution for the GLB/VAL name is

required to generate the initial values.
If this option is omitted, processing is performed for the site set by the environment
variable RSSITE.
The site name does not need to be specified if address resolution for the GLB/VAL name
is not required.

file: Specifies a text file that includes the initial-value data.
Only one input file can be specified.
This file can contain multiple initial GLB values, including GLB data for multiple areas.

Termination codes
0: Normal termination
Other than 0: Abnormal termination

1. COMPILER

2-3

Data layout
The following table shows the layout of the binary data generated by this command.
If the initial-value data is structured, assuming that the structure begins with a 4-byte boundary,
the alignment of the members of the structure are as shown in the following table.

Table 2-1 Binary Data Layout

Type Alignment (byte)

char 1
short 2
int 4
long 4
float 4
double 4
Array Dependent on element type
Structure Same as the member of the maximum alignment number

2. PROGRAMMING COMMAND

2-4

CHAPTER 2 PROGRAMMING COMMAND

Name
makehce - Maintains, updates, and regenerates program groups

Syntax
makehce [-Seiknpqrst] [-f makefile] [variable=value...] [target...]

Description

• Structure of makefile
Target lines, shell command lines, macro definitions, and include lines can be included in
makefile.

• Target lines

A target line consists of a non-null list of targets delimited by blanks, colons (:) or double colons
(::), as well as a list of prerequisite files called dependents. When creating a file name as a
dependent, the pattern matching notation is supported.

• Shell command lines

The text following a semicolon (;) in the target line and all subsequent lines beginning with a tab
are shell commands to be run to update the target. The first line that does not begin with a tab or
hash mark (#) begins with a new target definition, macro definition, or include line. Using the
sequence of a backslash (\) followed by a newline character makes it possible to continue the
shell command across multiple lines.
A target line associated with the command line is called a rule.

2. PROGRAMMING COMMAND

2-5

• Macro
A line in the format of character-string-1 = character-string-2 is a macro definition. Macros
can be defined at any position of makefile, but are usually defined together at the beginning. The
first character string is the macro name, and the second is the macro value. The second character
string is defined as the entire string of characters up to a comment character or non-extended
newline character. A null or tab on either side of the equal sign (=) are ignored (except those in
comments). The representation $character-string-1 at another position in makefile is replaced
with the second character string. When a single-character macro name is used and no character
string is defined as its replacement, parentheses can be used to enclose an option. A replacement
character string can be specified as an option by using $(character-string-1 [: subset-1 =
[subset-2]]). When such a character string is specified, all instances of subset 1 that do not
overlap at the end of the subcharacter string within the character-string-1 value are replaced
with subset 2. A subcharacter string in a macro value is delimited by a blank, a tab, a newline
character, or the beginning of a line.
Example:

OBJS = file1.obj file2.obj file3.obj

Suppose that the preceding character string is entered.

$(OBJS:.obj=.c)

The preceding character string would then evaluate as follows:

file1.c file2.c file3.c

A macro value can include a reference to another macro:

ONE = 1
TWELVE = $(ONE)2

The value for $(TWELVE) is set to $(ONE)2, but this value expands to 12 when it is used in a
target line, command line, or include line. After that, if the value of ONE is further changed by
makefile or another definition of the command line, the reference to $(TWELVE) reflects this
change.
Specifying a macro definition by using the command line disables the definition in makefile.
Specific macros are automatically defined for makehce.

2. PROGRAMMING COMMAND

2-6

• Include line
When the first seven characters of makefile are “include” and one or more null or tab characters
follow, the subsequent part of the line is interpreted as a file name. This part is read and
processed as a separate makefile after any macro in the file is extended by the current makehce
call.

• General description

The makehce command runs the commands entered in makefile to update one or more target
names. A target name becomes a program name. When the -f option is not specified, makefile
is processed first, and then Makefile is processed. When - is specified in the -f option, the
standard input is used. Multiple -f options can be specified. The arguments of makefile are
processed in the specified sequence. To specify multiple makefile names, the -f option must be
attached to the beginning of each makefile name. If a built-in rule or a macro is present, the
contents of makefile take priority over the built-in rule or macro.
If no target name is specified in the command line, the makehce command updates the first
target of makefile. Only targets subordinated to a newer file are updated.
If no file is specified, an old one file is assumed. If necessary, all dependents of the target (those
subordinate to the target) are recursively updated before the target is updated. This affects the
depth priority (vertical) update of the subordinate tree related to targets.
If a target does not have an explicit dependent specified after the delimiting character in the
target line, the shell command associated with the target is run when the target becomes old.
The target line can include a single colon or double colon between one or more target names and
explicit dependent names. A target name can be specified across multiple target lines, but all
target lines must be the same type (either single colon or double colon). In the case of a single
colon, only one target line can be associated with an explicit command. When an explicit
command is specified, if the target for which a dependent is specified in any line becomes old,
the explicit command is run. However, when no explicit command is specified, the default rule
can be run. In the case of a double colon, an explicit command can be associated with multiple
target lines that include the target name. When the target for which a dependent is specified in a
specific line becomes old, the command related to the line is run.
Target lines and their related shell command lines are also called the rule. Hash marks (#) and
newline characters enclose comments in makefile, with the exception of those in the rule.
Comments in the rule are determined by the SHELL macro settings.

2. PROGRAMMING COMMAND

2-7

The following makefile shows that pgm is subordinate to two files (a.obj and b.obj) and
that these files are subordinate to the corresponding source files (a.c and b.c) and the
common file incl.h.

OBJS = a.obj b.obj
pgm:$(OBJS)
 svload +P -o pgm -a tsk00 -w 128 4096 $(OBJS)
a.obj:incl.h a.c
 shc a.c
b.obj:incl.h b.c
 shc b.c

Command lines are run sequentially by the shell. Either or both of the prefixes - and + can be
specified for each command line. These two prefixes are described later.
The makehce command terminates when it returns a command termination code other than 0.
When the -i option is specified, or the special target .IGNORE is present in makefile, an error
message is printed to the standard output. However, the makehce command continues to run
makefile even if many command lines cause errors. When a hyphen (-) is present at the
beginning of a command line, the error returned by the line is printed to the standard output, but
the makehce command does not terminate. Using the prefix - selects an error in makefile and
ignores it.
When a command line returns an error while the -k option is specified, work is abandoned in
the current target, but work continues in other branches that are not subordinate to the target.
When the -k option is present in the MAKEFLAGS environment variable, the default processing
can be restored by specifying the -S option.
The -n option specifies command line print without execution. However, when the prefix + is
appended, the line is always run. The -t (touch) option updates the file modification date
without running a command.

2. PROGRAMMING COMMAND

2-8

Command lines are printed before they are run, but printing is suppressed when the character @
is present at the beginning of a command line. When the -s option is specified, or the special
target .SILENT is present in makefile, the printing of all command lines is suppressed. All
information to be printed by the makehce command, with the exception of the starting tag, is
directly transferred to the shell without being modified.
Therefore:

echo a\
b

This command generates the following character string in the same way that the shell does.

ab

• Options

Options can be specified in any order. All options except for the -f option can be specified
independently, or collectively by using hyphens (-).
-e: Environment variables take priority over the contents of makefile.
-f: makefile

The specified file name becomes makefile. The file name given as - displays the standard
input. If a built-in rule or a macro is present, the contents of makefile take priority over the
built-in rule or macro. This option can be specified multiple times, and the options are
processed in the order that they are specified.

-p: Writes a complete set of macro definitions and the target content to the standard output.
-i: Ignores the error code returned from the command. This mode is also valid when the special

target name .IGNORE is included in makefile.
-k: When the command returns a state value other than 0, work for the current entry is

abandoned, but work for other branches that are not subordinate to the target continues, as
opposed to the -S option.
If the -k and -S options are specified simultaneously, the option specified later is used.

-n: Indicates non-execution mode. The command is printed but is not run. Lines beginning with
@ are also printed. However, lines with the prefix + attached to the command are run.

-q: Indicates a question. The makehce command returns a value of 0 or another value
depending on whether the target file is the latest file or not. Even if this option is specified,
the target file is not updated.

-r: Clears the suffix list without using the built-in rule.
-s: Indicates silent mode. Command lines are run without being printed to the standard output.

This mode is also valid when the special target name .SILENT is included in makefile.

2. PROGRAMMING COMMAND

2-9

-S: When an error occurs during execution of the target updating command, this option
terminates the command. This option is the default value, as opposed to the -k option. If
the -k and -S options are specified simultaneously, the option specified last is used.
Specifying this option can disable the k flag in the MAKEFLAGS environment variable.

-t: Processes (updates) the target file without issuing a regular command.
macro-name = value

Zero or more command line macro definitions can be specified.
target-name

Zero or more target names can be specified in makefile. The specified targets are updated by
the makehce command. If no file name is specified, the makehce command updates the
first target other than the reasoning rule in makefile.

• Environment

Except for the SHELL environment variable, which is always ignored, all variables defined for
the environment are read by the makehce command and are processed as a macro definition.
Undefined variables and variables provided with a definition consisting of null characters are
included in the makehce command.
The macro definition has four sources that are read in the following order: internal (default),
current environment, makefile, and command line. Due to this processing order, the macro
assignment in makefile takes priority over environment variables. When the -e option is
specified, environment variables take priority over the macro assignment in makefile. Macro
definitions in command lines always take priority over any other definitions.
The MAKEFLAGS environment variable processed by the makehce command is processed
assuming that it includes valid input options (other than -f, -p, and -d) defined in command
lines. The MAKEFLAGS variable can also be specified in makefile.
If MAKEFLAGS is not specified in a command line or makefile, the makehce command
uniquely composes the variable and includes the options specified in command lines and the
default option in the variable. It then transfers the variable to commands. Therefore, the current
input options are always included in MAKEFLAGS. This is very useful when the makehce
command is run recursively. For this reason, running makehce -n recursively throughout the
entire software system can be used to examine what has been run. This is a way to debug
makefile related to the software project without running any commands.

2. PROGRAMMING COMMAND

2-10

• Suffix
In many cases, a suffix is attached to targets and dependents. Because information on specific
suffixes is included in the makehce command, the reasoning rule that is suitable for updating
targets can be identified by referring to the information. (See the following Reasoning rule
section.) A list of the current default suffixes is as follows.

.obj .c .c- .src

These suffixes are defined as dependents of the special built-in target .SUFFIXES. This is
defined automatically by the makehce command.
Additional suffixes can be specified in makefile as the dependent list of .SUFFIXES. These
additional values are added to the default values. Thus, multiple suffixes are accumulated. The
suffix list sequence has a meaning. (See the following Reasoning rule section.) To change the
sequence of suffixes, define .SUFFIXES that made the dependent list NULL, clear the
current .SUFFIXES value, and then define .SUFFIXES with suffixes that are specified in the
desired order.

• Reasoning rule

A specific target or dependent name (such as a name ending with .obj) is provided with
dependents that can be inferred (such as .c and .src). When makefile has no command to update
these names, or when a dependent file that can be inferred exists, the dependent file is compiled
to update targets. In this case, the reasoning rule of the makehce command examines suffixes
and determines an appropriate reasoning rule to create a file from other files. The following
default reasoning rules are defined at present.

Single-suffix rule

.c-

Double-suffix rule

.c.obj .c-.obj

.s.obj

2. PROGRAMMING COMMAND

2-11

The double-suffix reasoning rule (.c.obj) defines the method to create x.obj from x.c.
The rule that creates a file that has suffix .obj from a file that has suffix .obj is specified as
an entry that has .c.obj as a target and that has no dependent. The shell command defined for
the target defines the rule to create an .obj file from a .c file. A target name beginning with a
period (.) that does not include a slash (/) is not identified as an explicit target rule, but is
rather identified as an implicit reasoning rule. A target provided with a period is the single-
suffix reasoning rule. A target provided with two periods is the double-suffix reasoning rule.
Users can define additional reasoning rules in makefile, and also can re-define or cancel the
default reasoning rule.
The default reasoning rule that changes a .c file to an .obj file is as follows.

.c.obj:
 $(CC) $(CFLAGS) -c $<

The specific macro is used in the default reasoning rule so that options can be inserted into the
result command. For example, CFLAGS is used in the compiler options for shc.
This macro is defined automatically by the makehce command, but can be redefined in
makefile.
There are some special built-in macros used in the reasoning rule (<). (See the Built-in macros
section.)
When the target has no explicit dependent, or when the dependent has no target that matches the
defined explicit rule, the first reasoning rule that the makehce command searches meets both
files that match the dependent suffix of the target (NULL in some cases) and other suffixes of
the rule. Because the makehce command performs this search from the front to the back of
the .SUFFIXES value list, the .SUFFIXES definition sequence has an important meaning.
The example shown in General description can be rewritten more simply because the makehce
command defines the reasoning rule .c.obj.

OBJS = a.obj b.obj
pgm: $(OBJS)
 svload +P -o pgm -a tsk00 -w 128 4096
$(OBJS)
$(OBJS): incl.h

2. PROGRAMMING COMMAND

2-12

• Built-in targets
The makehce command has the following pieces of information on special targets. Specify the
pieces of information to be issued by makefile. (Except for .SUFFIXES, these pieces of
information are automatically specified by the makehce command, but can be modified.)
.DEFAULT: When a file must be created but there is no explicit command in the file or related

built-in rule, a command with purpose name .DEFAULT is used if .DEFAULT is
defined in makefile. .DEFAULT has no explicit dependent.

.PRECIOUS: Even if the QUIT, INTERRUPT, TERMINATE, or HANGUP command is
entered, the dependent of this target is not deleted.

.SILENT: This information has the same function as the -s option. There is no need to specify
a dependent or explicit command.

.IGNORE: This information has the same function as the -i option. There is no need to specify
a dependent or explicit command.

.SUFFIXES: Explicit dependents of .SUFFIXES are added to the built-in list of known
suffixes and are used together with the reasoning rule. If .SUFFIXES has no
dependent, the list of known suffixes is cleared. No commands are associated
with .SUFFIXES.

• Built-in macros

Five macros that are useful for creating a target creation rule are included. To clearly define
these macros, the terms of target and dependent need to be explained. When the makehce
command updates targets, it actually generates all targets to be updated. Before a rule (explicit
or implicit) is applied to a target, recursion is performed for each dependent of the target. After
recursion, each dependent becomes a target, and a unique dependent is generated. In such a
dependent, recursion continues until a target that has no dependent is found. Not all targets
processed by the makehce command are specified by makefile as an explicit target. Some
targets are made explicit dependents by makefile and some targets become implicit dependents
that are generated when the makehce command recursively updates targets. For example,
consider the execution of the following makefile:

pgm: a.obj b.obj
 svload +P –o pgm –a tsk00 –w 128 4096 a.obj b.obj

2. PROGRAMMING COMMAND

2-13

The following targets to be created are generated:
pgm: Two dependents and a single explicit rule are present.
a.obj: An implicit dependent a.c that meets the implicit rule .c.obj is present.
a.c: There is no implicit dependent or implicit rule. This stops recursion and returns the date

and time of the last correction of the a.c file.
b.obj: An implicit dependent b.c that meets the implicit rule .c.obj is present.
b.c: There is no implicit dependent or implicit rule. This stops recursion and returns the date

and time of the last correction of the b.c file.
In these definitions ($@, $?, $<, $*, and $$@), the word target indicates the following:
• A target specified by makefile
• An explicit dependent (specified in makefile) that is to be a target when the makehce

command performs recursion
• An implicit dependent that is to be a target when the makehce command performs recursion

(generated as a result of identification of the reasoning rule and file)
The word dependent indicates the following:
• An explicit dependent (specified in makefile) on specific targets
• An explicit dependent generated as a result of identification of the appropriate reasoning rule

that meets target suffix and corresponding file
It can be useful to consider the target rule to be a user-specified rule for a specific target name,
and to consider the reasoning rule to be a user-specified or makehce-specified rule for a
specific target name class. Furthermore, it can be useful to memorize the fact that, when the
makehce command performs recursion with explicit and implicit dependents, the target name
and the corresponding dependent name value vary, and that the reasoning rule is applied only to
implicit dependents for which the target rule is not defined in makefile or explicit dependents.

2. PROGRAMMING COMMAND

2-14

$@: The $@ macro becomes the full target name of the current target. This macro is evaluated as
both the target and the reasoning rule.

$?: The $? macro is a list of old dependents on the current target, which is practically a
recreated module. This macro is evaluated as both the target and the reasoning rule, but is
usually used only for the target rule. Usually, the $? macro is evaluated as a single name in
the reasoning rule, but is evaluated as multiple names in the target rule in some cases.

$<: The $< macro is evaluated as the source file name corresponding to the implicit rule that
meets the suffix of the created target in the reasoning rule. In other words, this macro is an
old file related to the target. In the .DEFAULT rule, the $< macro is evaluated as the
current target name. The $< macro is evaluated only as the reasoning rule. Therefore, the
$< macro is evaluated as a .c file in the .c.obj rule. The following shows an example
of creating an optimized .obj file from the .c file.

.c.obj:
 shc -c -O $*.c

or

.c.obj:
 shc -c -O $<

$*: The $* macro is the current target name from which the suffix is deleted. This macro is

evaluated only for the reasoning rule.

2. PROGRAMMING COMMAND

2-15

In addition to the built-in macros ($@, $?, $<, and $*) listed here, other macros for general use
are defined by the makehce command. These macros are available in the target rule in
makefile, and can also be redefined by makefile.
$$@: The $$@ macro has a meaning only in subordinate lines. Macros in this format are called

dynamic dependents, because they are evaluated when dependents are actually processed.
The $$@ macro is evaluated in the same way as the $@ macro in the command line. That
is, the $$@ macro is evaluated as the current target name. This macro can be useful when
creating many executable files, when each of which has only one source file. For example,
the following command can be created by using only this rule:

CMDS = cat echo cmp chown
$(CMDS) : $$@.c
 $(CC) -O $?
 svload +P -o $@ -a tsk00 -w 128 4096 $*.obj

When this makefile is called by makehce cat echo cmp chown, the makehce
command creates each target by using the general rule. The $$@ macro is evaluated as cat
when the target is cat, and is evaluated as echo when the target is echo.

• Return value

The makehce command returns 0 when it terminates successfully, and returns a value larger
than 0 when an error occurs.

3. ALLOCATOR

2-16

CHAPTER 3 ALLOCATOR

Name
svdfa

Syntax
svdfa aname size [option]

Description

The svdfa command allocates a specified split area within a specified global area and generates
a backup file.

Arguments

aname: Name of the split area to be allocated.
size: Size of the split area to be allocated. Specify a multiple of 4,096 bytes. If you do not do so, a

warning message is displayed and the specified size is rounded up to the nearest multiple of
4,096 bytes.

Options
-p: Allocates an area to store a task.
-s: Allocates an area to store a subprogram.
-gi: Allocates a GLB area with an initial value in a read/write global area.
-gw: Allocates a GLB area without an initial value in a read/write global area.
-gr: Allocates a GLB area with an initial value in a read-only global area.
-cmi: Allocates a CM area with an initial value in the memory area shared by PUs.
-cmw: Allocates a CM area without an initial value in the memory area shared by PUs.
-dcmi: Allocates a DCM area with an initial value in the duplexed shared memory area. Because

this is an extended option, it cannot be used with the S10VE.
-dcmw: Allocates a DCM area without an initial value in the duplexed shared memory area.

Because this is an extended option, it cannot be used with the S10VE.
-S: Specifies the use of the system access rights. If this option is omitted, the environment

variable RSUTYP that has been specified previously takes effect. By default, this
variable is set to the user's access rights (RSUTYP=u).

-u site: Specifies the site name (site) to be processed by the allocator. If this option is omitted,
the allocator processes the site that is set in the environment variable RSSITE.

-f adr: For adr, specify the address of the split area to be allocated, relative to the beginning of
the global area. The address must be a multiple of 4,096. If it is not, a warning message
is displayed and the specified address is rounded up to the nearest multiple of 4,096. If
this option is omitted, an area is automatically allocated; that is, the first available area
that is found is allocated.

3. ALLOCATOR

2-17

Notes
If none of the following options is specified, -p is assumed: -p, -s, -gi, -gw, -gr, -cmi, -
cmw, -dcmi, or -dcmw.
When a secondary partition area is allocated by the svdfs command in the split area allocated
with -gi, -gr, or -cmi specified, the secondary partition area is zero-cleared.
When allocating a CM area, be sure to specify the address of the CM area to be allocated by using
the -f option. If the -f option is omitted, an error occurs.
The address and size of the CM area to be allocated must be the same at all sites in the unit. If it is
not, data might be lost.
Table 2-2 shows the option combinations that can be specified.

Table 2-2 Combinations of svdfa Options

Parameter

Area type

Task
Sub-

program

Read/write
GLB with an
initial value

Read/write
GLB without

an initial value

Read-only
GLB with an
initial value

CM with an
initial value

CM without
an initial value

aname R R R R R R R

size R R R R R R R

O
pt

io
ns

-p
Y

(default)
‒ ‒ ‒ ‒ ‒ ‒

-s ‒ R ‒ ‒ ‒ ‒ ‒

-gi ‒ ‒ R ‒ ‒ ‒ ‒

-gw ‒ ‒ ‒ R ‒ ‒ ‒

-gr ‒ ‒ ‒ ‒ R ‒ ‒

-cmi ‒ ‒ ‒ ‒ ‒ R ‒

-cmw ‒ ‒ ‒ ‒ ‒ ‒ R

-dcmi ‒ ‒ ‒ ‒ ‒ ‒ ‒

-dcmw ‒ ‒ ‒ ‒ ‒ ‒ ‒

-S Y Y Y Y Y Y Y

-u site Y Y Y Y Y Y Y

-f adr Y Y Y Y Y R R

R: Required Y: Can be specified ‒: Cannot be specified

The following table shows the relationships between the user types and the owner types for areas
to be allocated:

User type
Owner type for area to be allocated

System User
System Y ‒

User ‒ Y

Y: Can be generated ‒: Cannot be generated

Termination codes

The svdfa command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

3. ALLOCATOR

2-18

Name
svdla

Syntax
svdla aname [option]

Description

The svdla command deletes split areas allocated by svdfa and backup files.

Arguments

aname: Name of a split area to be deleted.

Options
-S: Specifies the use of the system access rights. If this option is omitted, the default (set in

the RSUTYP environment variable in advance) is used.
-u site: For site, specify the name of the site to be handled by the allocator. If this option is

omitted, the allocator processes the site that is set in the environment variable RSSITE.

Notes

When secondary partition areas of a readable/writable global area, a read-only global area,
inter-PU shared memory, or duplexed shared memory exist in the specified split area, secondary
partition areas in the specified split area are also deleted at the same time.
The following table shows the relationships between user types and owner types for the areas to
be deleted:

User type
Owner type for area to be deleted

System User
System Y Y

User ‒ Y

Y: Can be deleted ‒: Cannot be deleted

Termination codes

The svdla command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

3. ALLOCATOR

2-19

Name
svdfs

Syntax
svdfs aname sname size [option]

Description

The svdfs command allocates a global secondary partition area in a split area allocated by
svdfa.
The command initializes the allocated area to zero (0).

Arguments

aname: Specifies the name of the split area to be divided into secondary partition areas.
sname: Specifies the name of the global secondary partition area to be allocated.
size: Size of the secondary partition area to be allocated (in bytes).

Options
-S: Specifies the use of the system access rights. If this option is omitted, the default (set in

the RSUTYP environment variable in advance) is used.
-u site: For site, specify the name of the site to be handled by the allocator. If this option is

omitted, the allocator processes the site that is set in the environment variable RSSITE.
-l adr: For adr, specify the address of the secondary partition area to be allocated, relative to the

beginning of the split area. The address must be a multiple of 4. If it is not, a warning
message is displayed and the specified address is rounded up to the nearest multiple of 4.
If this option is omitted, an area is automatically allocated; that is, the first available area
that is found is allocated.

-a align: For align, specify the number of alignments with a value of 2 raised to the nth power
(where 0 ≤ n ≤ 12). The secondary partition area is allocated based on this number.
The default is 2.

-t svtype: Affects alignment in accordance with the data type specified by svtype. Table 2-3
shows the relationship between the value specified for svtype and the alignment
count.

-e idxnum: When using the allocated secondary partition area as an indirect link global area,
specify the entry number to be assigned to the secondary partition area for idxnum. If
this option is omitted, no entry number is assigned. For idxnum, specify a value in the
range from 1 to 7,934.

3. ALLOCATOR

2-20

Notes
• When secondary partition areas allocated without specifying the -e option are used as indirect

link global areas, the svirglb command can be used to assign an entry number to the desired
secondary partition area.

• Determine the number of alignments according to the size declared for the data.
• The -l, -a, -t options are mutually exclusive. Do not specify them together.
• When allocating secondary partition areas in a split area allocated in the CM area, the address

and size of the CP site and HP site must be the same.
If they are not, data might be lost.

Table 2-4 shows the option combinations that can be specified.

Table 2-3 Relationship between the Value Specified for svtype and the Alignment Count

svtype Data type Alignment count
1 char 0 (1 byte)
2 short 1 (2 bytes)
3 long 2 (4 bytes)
4 struct 3 (8 bytes)
5 float 2 (4 bytes)
6 double 3 (8 bytes)
7 long double 4 (16 bytes)

When specifying the data type, the alignment specifications must be the same as those of the
R700.

Table 2-4 Combinations of svdfs Options

Parameter

Area type

Task
Sub-

program

Read/write
GLB with an
initial value

Read/write
GLB without

an initial value

Read-only
GLB with an
initial value

CM with an
initial value

CM without
an initial value

aname ‒ ‒ R R R R R

sname ‒ ‒ R R R R R

size ‒ ‒ R R R R R

O
pt

io
ns

-S ‒ ‒ Y Y Y Y Y

-u site ‒ ‒ Y Y Y Y Y

-l adr ‒ ‒ Y Y Y Y Y

-a align ‒ ‒ Y Y Y Y Y

-t svtype ‒ ‒ Y Y Y Y Y

-e index ‒ ‒ Y Y Y Y Y

R: Required Y: Can be specified ‒: Cannot be specified

3. ALLOCATOR

2-21

The following table shows the relationships between the user types and the owner types for
secondary partition areas to be allocated:

User type
Owner type for secondary partition area

System User
System Y (System) Y (User)

User ‒ Y (User)

Y: Can be allocated ‒: Cannot be allocated
The type in parentheses is the owner type of the allocated
secondary partition area.

Termination codes

The svdfs command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

3. ALLOCATOR

2-22

Name
svdls

Syntax
svdls sname [option]

Description

The svdls command deletes secondary partition areas allocated by svdfs.

Arguments

sname: External name of the secondary partition area to be deleted.

Options
-S: Specifies the use of the system access rights. If this option is omitted, the default (set in

the RSUTYP environment variable in advance) is used.
-u site: For site, specify the name of the site to be handled by the allocator. If this option is

omitted, the allocator processes the site that is set in the environment variable RSSITE.

Notes

The following table shows the relationships between the user types and the owner types for areas
to be deleted:

User type
Owner type for area to be deleted

System User
System Y Y

User ‒ Y

Y: Can be deleted ‒: Cannot be deleted

Termination codes

The svdls command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

3. ALLOCATOR

2-23

Name
svdfv

Syntax
svdfv ename value [option]

Description

The svdfv command registers information about external references of value information.

Arguments

ename: External name to be registered.
value: Value of the external name (where -231 value 231 - 1).

Options
-S: Specifies the use of the system access rights. If this option is omitted, the default (set in

the RSUTYP environment variable in advance) is used.
-u site: For site, specify the name of the site to be handled by the allocator. If this option is

omitted, the allocator processes the site that is set in the environment variable RSSITE.

Notes

The value (value) is handled as an integer. If a value that is outside the valid range (-231 value
231 - 1) is specified, an error occurs.
The value used during execution depends on the type of the value name in the language used
(specified by ename).
The following table shows the relationships between the user types and the owner types for value
areas to be allocated:

User type
Owner type

System User
System Y ‒

User ‒ Y

Y: Can be generated ‒: Cannot be generated

Termination codes

The svdfv command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

3. ALLOCATOR

2-24

Name
svdlv

Syntax
svdlv ename [option]

Description

The svdlv command deletes external reference information registered by svdfv.

Arguments

ename: Specifies the external name to be deleted.

Options
-S: Specifies the use of the system access rights. If this option is omitted, the default (set in

the RSUTYP environment variable in advance) is used.
-u site: For site, specify the name of the site to be handled by the allocator. If this option is

omitted, the allocator processes the site that is set in the environment variable RSSITE.

Notes

The following shows the relationship between the user type and deletion value owner type.

User type
Deletion value owner type
System User

System Y Y
User ‒ Y

Y: Can be deleted ‒: Cannot be deleted

Termination codes

The svdlv command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

4. LOADER

2-25

CHAPTER 4 LOADER

Name
svload

Syntax
svload [option] file...

Description

The svload command links the specified object file or library; registers it in the development
environment by using a name that represents a program, a subprogram, or data; and stores the file
or library in a backup file.

Arguments

file: Specify one or more object files or libraries to be linked.

Options
-S: This option specifies the system processing mode. When this option is omitted, the

predefined default access rights (defined by the environment variable RSUTYP) are
selected.

-u site: For site, specify the name of the site to be handled by the loader. When this option is
omitted, the loader processes the site that is set in the environment variable RSSITE.

-C n: For n, specify the first address of the area for storing the program or subprogram. When
specifying the address, ensure that it is a multiple of 4096 for a program or a multiple of
32 for a subprogram. When the specified address is not a multiple of 4096 or 32, the
system displays a warning message and raises the specified value to a multiple of 4096
or 32.

-p n: For n, specify the relative address in the area at which to start loading. This option is
valid for a program or subprogram. When this option is omitted, the file is automatically
registered. This option and the -C option are mutually exclusive. Do not specify them
together. When specifying the address, ensure that it is a multiple of 4096 for a program
or a multiple of 32 for a subprogram. When the specified address is not a multiple of
4096 or 32, the system displays a warning message and raises the specified value to a
multiple of 4096 or 32.

-a area: For area, specify an area to which to load the program or subprogram. When the file is
to be loaded is a program or subprogram, this option must be specified.

+P: This option specifies that the file is to be loaded as a program (task).
+I: This option specifies that the file is to be loaded as an indirect link subroutine (IRSUB).
+U: This option specifies that the file is to be loaded as a built-in subroutine (ULSUB).
+D: This option specifies that the file is to be loaded as global or CM data. The data type

depends on the attribute of the split area to which the data belongs.
+B: This option specifies that the binary data generated by the data generator (svdatagen)

is to be loaded as global or CM data. The data type depends on the attribute of the split
area to which the data belongs. This option specifies the binary data (*.bin) generated
by svdatagen for the file argument.

4. LOADER

2-26

-M n: A multitask program is created. The value n represents the number of tasks in a
multitask program. Specify a value for n that is in the range from 2 to 128.

-m n[n...]: This option specifies multi-entry loading of an IRSUB. For n, specify an entry name
as an entry point. This option is valid only when +I is specified.

-Z: The sizes of the text, data, bss, and stack sections of the load module are output. This
option does not register a program.
If this option is specified together with the -P option, the command generates a
linkage map list without loading.
If this option is specified together with the -w n [,m] option, the command makes it
possible to determine the necessity for caller-side reloading (stack size enlargement)
when the stack size used by the called IRSUB increases. In such cases, specify the
values n and m so that they are equal to the values specified for the last registration.

-d: This option does not delete the load module file after storage in the backup file. The
load module file is generated in PGM, SUB, or GLB within the site directory.

-s: Generates a stack use amount information file. The stack use amount information file
is generated in the PGM/SUB directory within the site directory.

-l lib: For lib, specify the library to be linked. libcpms.lib and libsh4nbmdn.lib
are automatically linked.

-P [file]: Outputs the linkage map list of the program. If file is not specified, the command
generates a file in PGM, SUB, or GLB within the site directory with the resulting file
name formed by adding .map to the end of the name of the program or subprogram
to be loaded. For initial value data loading, the file name is formed by adding .map to
the end of the sarea name of the beginning of the loaded data.
When the environment variable LOADHR_FORCE_MAP=YES is set, a linkage map
list is generated even when this option is not specified. If both the environment
variable LOADHR_FORCE_MAP and this option are specified, both specifications are
considered valid.

-o obj: For obj, specify the name of the program to be created. When the specified program
name represents a subprogram, the specified name is used as the subprogram name.
Make sure that the subprogram name is identical to the function name in the program.

-E n: This option achieves storage with a redundant byte count n taken into account at the
time of program or subprogram linkage. This option is useful when the program or
subprogram is likely to be replaced with a larger one in the future.

-r: This option checks whether a program or subprogram can replace the contents of a
specified area. When specifying the storage address, ensure that it is identical to the
program or subprogram address before replacement.

4. LOADER

2-27

-w n [m]: This option specifies the stack area size in bytes.
This option is mandatory for a program or subprogram.
For n, specify the size of the stack area to be used locally.
For m, specify the stack size to be allocated. If m is not specified, the resulting stack
size will be determined by adding the local stack size n to the maximum stack size for
use by the called IRSUB.
If the stack size m to be allocated is smaller than n plus the called maximum stack size
of the called IRSUB, the command generates a warning message.
Ensure that n and m are in the range from 0 to 8388608 (0x800000) and are multiples
of 8. If neither of the specified values is a multiple of 8, the command displays a
warning message and raises the value to a multiple of 8 for processing.

-Xref: Outputs the cross-reference information into the linkage map list of the program. This
option is valid only when -P is specified.

Library search path

The library search path of the loader (the library search sequence specified by the -l option)
conforms to the input file search sequence for the optimization linkage editor in the shc compiler
package.
The input file search sequence for the optimization linkage editor is as follows:

(1) Current directory
(2) Directory specified by HLNK_DIR in the RPDP operating environment setup file
Multiple paths can be specified for HLNK_DIR in the RPDP operating environment setup file.
To specify two or more paths, separate them with semicolons.

Notes

The system area is used as the stack area of the built-in subroutine. The stack size of the built-in
subroutine must be 512 bytes or less.
Because IRSUBs and multitasks are re-entrant programs, they cannot have a BSS area. If an
IRSUB or a multitask that has a BSS area is loaded, a warning message appears.
Task execution starts at the beginning of the program. It does not always start from main.
When loading the program, specify the object file of the main routine first.
Do not load an object compiled by cchc of the R700 to the S10VE.

Stack size

When the program uses a stack area, specify its size.

4. LOADER

2-28

System/user external reference check
The system cannot reference user information. The user can reference system subprograms only.
The following table shows the combinations that can be referenced.

Referenced

Referencing

Subprogram
Global

(including CM)
Value

S U S U S U

Program
S Yes ‒ Yes ‒ Yes ‒
U Yes Yes ‒ Yes ‒ Yes

Subprogram
S Yes ‒ Yes ‒ Yes ‒
U Yes Yes ‒ Yes ‒ Yes

Global
(including CM)

S Yes ‒ Yes ‒ Yes ‒
U Yes Yes ‒ Yes ‒ Yes

S: System U: User
Yes: Can be referenced ‒: Cannot be referenced

Note: When global data references a subprogram, an indirect link table number corresponding to
its name is embedded in the global data. When global data references global data, an
absolute address is embedded in the global data. When global data references a value, the
value is embedded in the global data.

Notes

Because IRSUBs and multitasks are re-entrant programs, they cannot have a BSS area. If they do,
a warning message appears.
• If multiple global data items exist within the program to be loaded, the local label address

solution will not be implemented. In this case, divide the global data into multiple files for
loading.

• Task execution starts at the beginning of the program. It does not always start with main.
• The option combinations are as follows:

 -o obj -a area -w n m -S -u site -C n -p n -M n -d -Z -P file -E n -r -m n -l -Xref

Program +P R R R O O O O O ‒ O O O O O ‒ O O

IRSUB +I R R R O O O O O ‒ O O O O O O O O

ULSUB +U R R R O O O O O ‒ O O O O O ‒ O O

Data +D ‒ ‒ ‒ ‒ O O ‒ ‒ ‒ ‒ O O ‒ ‒ ‒ O ‒

Binary data +B ‒ ‒ ‒ ‒ O O ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒

R: Required O: Optional ‒: Cannot be specified

4. LOADER

2-29

Termination codes
The svload command returns the following termination codes:
0: Normal termination
Non-0: Abnormal termination

Cross-reference information

Cross-reference information of symbols is output. An example of the cross-reference information
output is as follows:

(1) A unit number that identifies an object.
(2) The object name shown in the input specification order at the time of the link.
(3) The symbol name, which is output in ascending order for each section.
(4) The symbol location address.
(5) The address of the external symbol reference location. This address is output in the following

format:
unit-number(address-or-offset-in-section:section-name)

** Cross Reference List **

 No Unit Name Global. Symbol Location External Information
 (1) (2) (3) (4) (5)
 0001 a
 SECTION=P _func
 00000100
 _funcl
 00000116
 _main
 0000012c
 _g
 00000136
 SECTION=B
 _a
 00000190 0001(00000140:P)
 0002(00000178:P)
 0003(0000018C:P)
 0002 b
 SECTION=P
 _func01
 00000154 0001(00000148:P)
 _func02
 00000166 0001(00000150:P)
 0003 c
 SECTION=P
 _func03
 00000184

4. LOADER

2-30

Procedure for calculating stack size
The overall amount used for the stack area can be determined by calculating the stack usage
amounts of the functions included in the program and considering function call relationships.

(1) Calculating the stack area used by a function

The size of the stack area used by a function can be determined from frame size in the
object list generated by the compiler.
The following is a specific example.

 Source code

 Object list

In this example, the size of the stack area used by function h is 12 bytes, which is the value
of frame size given under COMMENT in the object list.

extern int h(char , int *, double);
int h(char a, register int *b, double c)
{
 char *d;

 d = &a;
 h(*d,b,c);
 {
 register int i;

 i = *d;
 return i;
 }
}

SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT

P 00000000 _h: ; function: h
 ; frame size=12
 00000000 2FE6 MOV.L R14,@-R15
 00000002 4F22 STS.L PR,@-R15

4. LOADER

2-31

(2) Calculating the overall stack size from function call relationships
The size of the stack area to be used can be calculated from function call relationships.
Figure 2-1 shows how to calculate the stack usage amount from a function call relationship.

Function name
Stack use amount

(bytes)
main 24

f 32
g 24

Figure 2-1 Function Call Relationship and Stack Usage Amount

When function g is called via function f as shown in the preceding figure, the stack area size is
as indicated in Table 2-5.

Table 2-5 Stack Size Calculation Examples

Call route Stack size (bytes)

main(24) -> f(32) -> g(24) 80
main(24) -> g(24) 48

As shown here, it is necessary to calculate the stack size for a function at the deepest call level
and allocate at a minimum the stack area that is required for its maximum size.
When using a standard library function, it is also necessary to consider the stack size used by
the library function. For details about the stack sizes used by standard library functions, see
APPENDIX H LIST OF STACK SIZES FOR LIBRARY USE.
The stack size for a recursively called function must be calculated by multiplying the function
stack size by the maximum recursive call count.
Even when no library function is used with a source program, an execution routine required to
run the program might be linked. In this case, the stack size used by the execution routine
must be considered. The stack size used by the execution routine can be confirmed by using
the stack analysis tool described on the next page, which shows the procedure for determining
the stack usage amount.

main()

f()
g()

4. LOADER

2-32

Procedure for determining the stack usage amount
When the -s option is specified when a program or subprogram is loaded, a stack usage amount
information file can be generated.
The amount of overall stack usage by a program or subprogram can be determined by analyzing
the stack usage amount information file generated by the loader by using the stack analysis tool
supplied with the compiler package.

 Generating the stack usage amount information file

When the -s option is specified when a program or subprogram is loaded, the system
generates the stack usage amount information file.
The stack usage amount information file is generated in the PGM/SUB directory within the site
directory. The name of the file is formed by attaching _.sni to the program or subprogram
name.

Example:
svload +P -o pgm01 -a tskarea -w 4096 pgm01.obj -s

In this example, the file site-directory\PGM\pgm01_.sni is generated.

 Using the stack analysis tool

You can start the stack analysis tool to display the amount of stack usage by a program or
subprogram by performing the following procedure.
For a detailed description of how to use the stack analysis tool, see the documentation supplied
with the compiler package and the Help for the stack analysis tool.

(1) To start the stack analysis tool: In Windows® 7, from the Windows® Start menu, select

Renesas, High-performance Embdeded Workshop, and then Call Walker. In
Windows® 10, from the Windows® Start menu, select Renesas and then Call Walker.

(2) From the File menu of the stack analysis tool, select Import Stack file. A dialog box
appears. In the File field of the dialog box, specify the stack usage amount information file
that was generated by the loader, and then click Open.

 Display example of the stack analysis tool

4. LOADER

2-33

Notes
From the Standard Library Version menu in the stack analysis tool, select
Standard_Library_SH_V9.
Do not use Standard_Library_H8_V6 or Standard_Library_H8_V7, because these options
are for different CPU types.

 Notes on analyzing the amount of stack usage by a loaded program or subprogram

When used to calculate the amount of stack usage, the stack analysis tool indicates that the
stack size of a program or subprogram written by the assembler is 0 bytes. Therefore, when
you use the stack analysis tool to determine the amount of stack usage by a program or
subprogram loaded by RPDP, note the following:

 memcpy() stack size

In a loaded program or subprogram, the CPMS library memcpy() function is linked instead
of the C standard library memcpy() function. The stack analysis tool indicates that the stack
size used by the CPMS library memcpy() function is 0. In reality, however, the CPMS
library memcpy() function uses 28 bytes of the stack.
From the Edit menu of the stack analysis tool, use the Modify command to change the
memcpy() function stack size to 28 bytes, and then recalculate the amount of stack usage.
To determine whether the loaded program or subprogram uses memcpy(), search for
“memcpy” by using the search function of the stack analysis tool.

4. LOADER

2-34

 IRSUB stack size
When an IRSUB is called from a loaded program or subprogram, the stack analysis tool
calculates that the amount of stack used by the IRSUB is 0 bytes. To calculate the stack
usage amount including the stack size used by the called IRSUB, use the Modify command
in the Edit menu of the stack analysis tool to change the stack size and recalculate the
amount of stack use, in the same way as with memcpy().
The stack size used by an IRSUB can be determined by generating a stack usage amount
information file when the IRSUB is loaded and by using the stack analysis tool to perform
an analysis.
When determining the stack size used locally as specified for the loader (excluding the called
IRSUB), you do not have to recalculate the IRSUB stack size.

 Stack size of a program or subprogram written by the assembler
To determine the stack size used by a program or subprogram written by the assembler, use
the preceding procedure. More specifically, use the Modify command in the Edit menu of
the stack analysis tool to change the stack size and recalculate the amount of stack usage.

4. LOADER

2-35

(3) Specifying the stack size by using svload
Specify the stack size by using svload as follows:
-w n m
n: Stack size to be used by the program or subprogram to be loaded.
m: Size including the stack size to be used by an IRSUB called from the program or

subprogram to be loaded.
When this value is specified when a program is loaded, stack allocation takes place
according to the specified size. If this value is not specified, stack allocation takes place
according to the value n plus the value of the stack size used by the called IRSUB.
If the value specified for m is smaller than n plus the value of the stack size used by the
IRSUB, the loader outputs the following warning message:

name: Name of the program or subprogram to be loaded
xxxx: Size including the stack size to be used by the called IRSUB
zzzz: Stack size specified for m
sname: Name of the called IRSUB (having the maximum stack size)
yyyy: Stack size used by sname

To calculate the stack size used by a program or subprogram, follow the procedure described
in (2) Calculating the overall stack size from function call relationships.
The following is an example specification of the stack size by using svload with reference
to a call-related program, as shown in Figure 2-1 Function Call Relationship and Stack Usage
Amount.

 When no IRSUB is used

main: Program main
f: ISUB
g: ISUB
In this case, specify the following:

Because the maximum stack size used by the program to be loaded is 80 bytes, specify 80
for n.
For m, specify the size of the stack to be allocated. If m is not specified, the stack size is set
to 80 bytes. To allow for an increase in the stack size for program modification or for the
necessity of IRSUB calls, specify a stack size that is larger than the minimum required.
The stack/BSS of the program is located on a page that is separate from the text/data page.
Therefore, even if the specified stack size is larger than the minimum required, the program
size does not increase unless the 4096-byte limit is exceeded by the BSS size plus the stack
size.

Warning：Stack size (name) = xxxx (zzzz) byte [Max refered (sname) size = yyyy byte] Err

svload +P -o main -w 80 4096

4. LOADER

2-36

 When an IRSUB is used
main: Program main
f: ISUB
g: IRSUB
In this case, specify the following:

The IRSUB and program must be loaded separately. The stack size must be specified for
both the IRSUB and the program.

• For IRSUB loading

Because the stack size used by the IRSUB (g) is 24 bytes, specify 24 bytes as the stack
size. We recommend not specifying a value for m. If a value is specified for m, it is used
as the IRSUB stack size that is calculated by the IRSUB caller side.

• For program loading
Because the stack size used by the program is 56 bytes, specify 56 as the value of n.
For m, specify a value that is at least 80 bytes, the value that is obtained by adding the
value 56 to the stack size used by the IRSUB (g), which is 24. As in the case where no
IRSUB is used, specify a value for m that is greater than the minimum required to allow
for program modifications.
If the value specified for m is smaller than 80 bytes, the loader outputs the following
warning message:

If no value is specified for m, the loader allocates 80 bytes of stack by adding the stack
size used by the IRSUB (g), which is 24.

svload +I -o g -w 24
svload +P -o main -w 56 4096

Warning：Stack size (main) = 80 (m) byte [Max refered (g) size = 24 byte] Err

4. LOADER

2-37

 When an IRSUB is used from another IRSUB
main: Program main
f: IRSUB
g: IRSUB
In this case, specify the following:

• For IRSUB (g) loading
Because the stack size used by the IRSUB (g) is 24 bytes, specify 24 bytes as the stack
size. We recommend not specifying a value for m. If a value is specified for m, it is used
as the IRSUB stack size that is calculated by the IRSUB caller side.

• For IRSUB (f) loading
Because the stack size used by the IRSUB (f) is 32 bytes, specify 32 bytes as the stack
size. If no value is specified for m, the IRSUB (f) stack size calculated by the IRSUB
caller side is 56 bytes, which is determined by adding the stack size of the IRSUB (g) that
is called by the IRSUB (f). If a value is specified for m, it is used as the IRSUB (f) stack
size that is calculated by the IRSUB caller side. We recommend not specifying a value for
m.
If the value specified for m is smaller than 56 bytes, the loader outputs the following
warning message:

• For program loading
Because the stack size used by the program is 24 bytes, specify 24 as the value n.
For m, specify a value that is at least 80 bytes, a value that is obtained by adding the value
24 to the stack size used by the called IRSUB (f) having the maximum stack size, which is
56. As in the case where no IRSUB is used, specify a value for m that is greater than the
minimum required to allow for program modifications.
If the value specified for m is smaller than 80 bytes, the loader outputs the following
warning message:

If no value is specified for m, the loader allocates 80 bytes of stack by adding the stack
size used by the IRSUB (f), which is 56.

svload +I -o g -w 24
svload +I -o f -w 32
svload +P -o main -w 24 4096

Warning：Stack size (f) = 56 (m) byte [Max refered (g) size = 24 byte] Err

Warning：Stack size (main) = 80 (m) byte [Max refered (f) size = 56 byte] Err

4. LOADER

2-38

Library integrity check
When compilation is performed with the shc -denormalization=off and -
round=zero options specified, you must specify the library libsh4nbmzz.lib
(-lsh4nbmzz) at the time of loading. If libsh4nbmzz.lib is not specified, the loader
outputs the following error message:

Similarly, if libsh4nbmzz.lib is specified in situations where the shc
-denormalization off and -round=zero options are not specified for compilation, the
loader outputs the following error message:

If both objects are mixed to specify -lsh4nbmzz as well as -lsh4nbmdn, the loader outputs
the following error message:

svload : Error : Undefined symbols
svload : _use_libsh4nbmzz

svload : Error : Undefined symbols
svload : _use_libsh4nbmdn

svload : rpdpload: Inconsistent object was mixed (NO:2004-25)

4. LOADER

2-39

Name
svdload

Syntax
svdload pname [option]

Description

The svdload command deletes the program or subprogram registered by the svload
command from the development environment. However, the backup file is not zero-cleared.

Arguments

pname: Specify the name of the program or subprogram to be deleted.

Options
-S: This option specifies the system processing mode. When this option is omitted, the

predefined default access rights (defined by the environment variable RSUTYP) are
selected.

-u site: For site, specify the name of the site to be handled by the loader. When this option is
omitted, the loader processes the site that is set in the environment variable RSSITE.

+P: The program (task) is deleted.
+I: The indirect link subroutine (IRSUB) is deleted.
+U: The built-in subroutine (ULSUB) is deleted.

Termination codes

The svdload command returns the following termination codes:
0: Normal termination
Non-0: Abnormal termination

4. LOADER

2-40

Name
svcomp

Syntax
svcomp [option] file...

Description

The svcomp command compares the contents of the backup files for programs, subprograms,
and data registered by the loader with the contents of the load module. The command then
displays the results.

Arguments

file: Specify one or more object files or libraries to be combined.

Options
-S: This option specifies the system processing mode. When this option is omitted, the

predefined default access rights (defined by the environment variable RSUTYP) are
selected.

-u site: For site, specify the name of the site to be handled by the loader. When this option is
omitted, the loader processes the site that is set in the environment variable RSSITE.

-C n: This option has no meaning when used with svcomp.
-p n: This option has no meaning when used with svcomp.
-a area: This option has no meaning when used with svcomp.
+P: Specifies that the item loaded as a program (task) is to be used for comparison.
+I: Specifies that the item loaded as an indirect link subroutine (IRSUB) is to be used for

comparison.
+U: Specifies that the item loaded as a built-in subroutine (ULSUB) is to be used for

comparison.
+D: Specifies that the item loaded as global or CM data is to be used for comparison. The

data type depends on the attribute of the split area to which the data belongs.
+B: Compares loaded global or CM data with binary data generated by the data generator

(svdatagen). This option specifies the binary data (*.bin) generated by
svdatagen for the file argument.

-M n: This option has no meaning when used with svcomp.
-m n[n...]: This option has no meaning when used with svcomp.
-Z: This option has no meaning when used with svcomp.
-d: This option has no meaning when used with svcomp.
-l lib: Specifies the library (lib) to be linked. Note that libcpms.lib and

libsh4nbmdn.lib are automatically linked.
-P [file]: This option has no meaning when used with svcomp.
-o obj: For obj, specify the name of the load module to be compared with.
-E n: This option has no meaning when used with svcomp.
-r: This option has no meaning when used with svcomp.
-w n [m]: This option has no meaning when used with svcomp.
-Xref: This option has no meaning when used with svcomp.

4. LOADER

2-41

Library search path
The library search path of the loader (the library search sequence specified by the -l option)
conforms to the input file search sequence for the optimization linkage editor in the shc compiler
package.
The input file search sequence for the optimization linkage editor is as follows:

(1) Current directory
(2) Directory specified by HLNK_DIR in the RPDP operating environment setup file
Multiple paths can be specified for HLNK_DIR in the RPDP operating environment setup file.
To specify two or more paths, separate them with semicolons.

Termination codes

The svcomp command returns the following termination codes:
0: Not different.
1: Different.
101: A command option was specified.
Other codes: The comparison failed.

4. LOADER

2-42

svcomp results display
The svcomp command outputs the following messages depending on whether differences were
found during the comparison.

(1) If no differences were found during the comparison:

If no differences were found in the comparison, the svcomp command outputs the following
message:

compare OK (type = X name = xxx)

X: Indicates the type of the resource to be compared.
pgm: Program.
irsub: IRSUB
ulsub: Built-in program
data: Data (GLB or CM)

xxx: Indicates the name of the resource to be compared.
This reads data when data is to be used for comparison.

(2) If differences were found during the comparison:

If differences were found during the comparison, the svcomp command outputs the
following message:

Display format

The display produced by the svcomp command consists of the following fields:
(1) Header
(2) Detailed information
(3) Footer

Figure 2-2 shows the format for a program or subprogram, while Figure 2-3 shows the format for
data. The italicized character strings vary depending on the execution environment.

4. LOADER

2-43

Figure 2-2 Format of the Display Produced by svcomp for a Program or Subprogram

The following is an explanation of the fields in the figure.
(1) Header field

date: Time at which the svcomp command started
site-name: Name of the processed site
type: Type of the program compared

pgm: Program used as a task
irsub: Indirect link subroutine
ulsub: Built-in subprogram

name: Name of the program compared
(2) Detailed information field

This field displays the results of comparison between the old sizes of the text, data, and bss
sections and their new sizes and between the old contents of the text and data sections and
their new contents. When the new size differs from the old size, the comparison result is
displayed relative to the smaller size.
(a), (c), and (e): The results of comparison between the old sizes of the text, data, and bss

sections and their new sizes are displayed in hexadecimal. If no differences
exist between them, nothing is displayed.

(b), (d): The results of comparison between the old contents of the text and data sections and
their new contents are displayed in hexadecimal. If no differences exist between them,
nothing is displayed. The hexadecimal data displayed immediately after loc= is the
address where a difference was found. The address is relative to the beginning of the
text or data.

(3) Footer field
This field indicates that the comparison is complete.

** compare list ** date

site name = site-name (1)

type = type name = name

< text > (2)
 text size new = xxxxxxxx old = xxxxxxxx
 loc = xxxxxxxx new = xxxxxxxx old = xxxxxxxx
 : :

< data >
 data size new = xxxxxxxx old = xxxxxxxx

loc = xxxxxxxx new = xxxxxxxx old = xxxxxxxx
 : :

< bss >
 bss size new = xxxxxxxx old = xxxxxxxx

(a)
(b)

(c)
(d)

(e)

** compare list output end ** (3)

4. LOADER

2-44

Figure 2-3 Format of the Display Produced by svcomp for GLB or CM

The following is an explanation of the fields in the figure.

(1) Header field
date: Time at which the svcomp command started
site-name: Name of the processed site

(2) Detailed information field
This field displays the results of comparison between the old size of GLB or CM and its new
size and between the old contents of the text and data sections and their new contents. When
the new size differs from the old size, the comparison result is displayed relative to the smaller
size.
(a): The results of comparison between the old size of GLB and CM and its new size are

displayed in hexadecimal. If no differences exist between them, nothing is displayed.
(b): The results of comparison between the old contents of GLB and CM and its new contents

are displayed in hexadecimal. If no differences exist between them, nothing is displayed.
The hexadecimal data displayed immediately after loc= is the address where a difference
was found. The address is relative to the beginning of the text or data.

(3) Footer field
This field indicates that the comparison is complete.

** compare list ** date

site name = site-name (1)

type = data name = data

<data-name> (2)
 data size new = xxxxxxxx old = xxxxxxxx
 loc = xxxxxxxx new = xxxxxxxx old = xxxxxxxx
 : :

(a)
(b)

** compare list output end ** (3)

5. BUILDER

2-45

CHAPTER 5 BUILDER

Name
svctask

Syntax
svctask pname tname tn [option]

Description

The svctask command creates a task by using the load module loaded by the loader as a
resource.

Arguments

pname: Program name of the load module to be used as a resource for task creation.
tname: Name of the task to be created.
tn: Task number from 1 to 224 for a user task or from 225 to 300 for a system task. If the

specified task number is already in use, an error occurs.

Options
-S: Specifies that the system processing mode is to be used. If this option is omitted, the

predefined default access rights (defined by the environment variable RSUTYP) are
selected.

-u site: For site, specify the name of the site to be handled by the builder. If this option is
omitted, the builder processes the site that is set in the environment variable RSSITE.

-l lvl: For lvl, specify the execution level at the initial startup of the task. The level must be
from 4 to 27 for a user task or from 0 to 31 for a system task. If this option is omitted, lvl
is assumed to be 27 for a user task or 0 for a system task.

-r n: Specifies the stack area number to use when generating multiple tasks from a program
that serves as a resource. This value cannot exceed the number of multitasks (-M n),
which is specified by the load command. If this option is omitted, the system assumes
that the minimum unused stack area number is specified.

Notes

• User tasks are tasks for which a TN value from 1 to 224 is registered. System tasks are tasks for
which a TN value from 225 to 300 is registered.

• For registrations in which RSUTYP=s is specified, a system task can be created.
• For registrations in which RSUTYP=u is specified, specifying the -S option allows the creation

of a system task.
• If RSUTYP=u is specified and the -S option is omitted, no system task can be created.

The table on the following page shows the available combinations of task types and options.

5. BUILDER

2-46

Task type
Parameter

Single task Multi-task

pname R R
tname R R
tn R R

O
pt

io
ns

 -u site Y Y
-l lvl Y Y
-S Y Y
-r n ‒ R

R: Required Y: Can be specified ‒: Cannot be specified

The following table shows the relationships between user types and program owner types:

User type
Program owner type

System User
System Y Y
User ‒ Y

Y: Task can be created ‒: Task cannot be created

Termination codes

The svctask command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

5. BUILDER

2-47

Name
svdtask

Syntax
svdtask tname [option]

Description

The svdtask command deletes task that were created by svctask.

Arguments

tname: Name of the task to be deleted

Options
-S: Specifies that the task to be deleted is a system task. If this option is omitted, the default

(set in the RSUTYP environment variable in advance) is used.
-u site: Specifies the name of the site to be processed by the builder. If this option is omitted, the

builder processes the site that is set in the environment variable RSSITE.

Notes

• The following table shows the relationships between user types and owner types for tasks to be
deleted.

User type
Deletion task owner type

System User
System Y Y
User ‒ Y

Y: Task can be deleted ‒: Task cannot be deleted

Termination codes

The svdtask command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

5. BUILDER

2-48

Name
svbuild (registration of indirect link resident subprograms)

Syntax
svbuild name -ir -e irno [option]

Description

The svbuild command registers indirect link resident subprograms.

Arguments

name: Indirect link resident subprogram name (entry name when multiple entries are loaded).
-ir -e irno: For irno, specify the registration number of an indirect link resident subprogram.

A value in the range from 1 to 7,935 can be specified for irno.

Options
-u site: For site, specify the name of a site to be handled by the builder. If this option is omitted,

the builder processes the site that is set in the environment variable RSSITE.

Type
Parameter

Indirect link resident
subprogram

name -ir -e irno R

O
pt

io
n

-u site Y

R: Required Y: Can be specified

Termination codes

The svbuild command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

5. BUILDER

2-49

Name
svbuild (registration of built-in subroutines)

Syntax
svbuild name point en -ul [option]

Description

The svbuild command registers built-in subroutines.

Arguments

name: Built-in subroutine name.
point en -ul: For point, specify the entry point of the built-in subroutine by using one of the

following character strings. For en, specify the entry number in the range from 1 to
4. Note that entry number 1 is reserved for the OS, and entry number 2 is reserved
for the NXACP.
CPES: CPES built-in subroutine
IES: IES built-in subroutine
EAS: EAS built-in subroutine
INS: INS built-in subroutine
EXS: EXS built-in subroutine
ABS: ABS built-in subroutine
PCKS: PCKS built-in subroutine
MODES: MODES built-in subroutine
WDTES: WDTES built-in subroutine
XEAS: Subroutine that links at an XPU error

Options
-u site: For site, specify the name of the site to be handled by the builder. If this option is

omitted, the builder processes the site that is set in the environment variable RSSITE.

5. BUILDER

2-50

Notes
Although the same subprogram can be incorporated at multiple locations (specified by point), it
cannot be incorporated for multiple entry numbers (en).
The following table shows the available option combinations.

Type

Parameter
Built-in subroutine

name point en -ul R

O
pt

io
n

-u site Y

R: Required Y: Can be specified

Termination codes

The svbuild command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

5. BUILDER

2-51

Name
svdbuild (deletion of indirect link resident subprograms)

Syntax
svdbuild name -ir [option]

Description

The svdbuild command deletes indirect link resident subprograms.

Arguments

name: Indirect link resident subprogram name (if multiple entries are loaded, the entry name)
-ir: The specified indirect link resident subprogram is deleted.

Options
-u site: For site, specify the name of the site to be handled by the builder. If this option is

omitted, the builder processes the site that is set in the environment variable RSSITE.

Type
Parameter

Indirect link resident
subprogram

name -ir R

O
pt

io
n

-u site Y

R: Required Y: Can be specified

Termination codes

The svdbuild command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

5. BUILDER

2-52

Name
svdbuild (deletion of built-in subroutines)

Syntax
svdbuild name point -ul [option]

Description

The svdbuild command deletes built-in subroutines.

Arguments

name: Built-in subroutine name.
point -ul: The specified built-in subroutine is deleted.

For this argument, specify one of the following character strings as the entry point of
the built-in subroutine:
CPES: CPES built-in subroutine
IES: IES built-in subroutine
EAS: EAS built-in subroutine
INS: INS built-in subroutine
EXS: EXS built-in subroutine
ABS: ABS built-in subroutine
PCKS: PCKS built-in subroutine
MODES: MODES built-in subroutine
WDTES: WDTES built-in subroutine
XEAS: Subroutine that links at an XPU error

Options
-u site: For site, specify the name of the site to be handled by the builder. If this option is

omitted, the builder processes the site that is set in the environment variable RSSITE.

5. BUILDER

2-53

Notes
The following table shows the available option combinations.

Type

Parameter
Built-in subroutine

name point -ul R

O
pt

io
n

-u site Y

R: Required Y: Can be specified

Termination codes

The svdbuild command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

5. BUILDER

2-54

Name
svirglb

Syntax
svirglb idxnum name [option]

Description

The svirglb command registers or deletes secondary partition areas allocated by svdfs as
indirect link global areas.

Arguments

idxnum: Specify the registration number of the indirect link global table in the range from 1 to
7,935.

name: Specify the indirect link global area name. (When the -s or -a option is omitted, specify
the name of the secondary partition area already allocated by svdfs as the indirect link
global area name.)

Options
-u site: For site, specify the name of the site to be handled by the builder. If this option is

omitted, the builder processes the site that is set in the environment variable RSSITE.
-s name: When using the address of the indirect link global area plus an offset as the address to

be stored in the indirect link global table, specify the secondary partition area name for
name.

-o offset: When using the address of the indirect link global area plus an offset as the address to
be stored in the indirect link global table, specify the offset for offset as a decimal or
hexadecimal number. A number starting with 0x is handled as a hexadecimal number.

-a adr: Specify the address to be stored in the indirect global table as an absolute address in
decimal or hexadecimal. A number starting with 0x is handled as a hexadecimal
number.

-d: The specified registration number is deleted from the indirect link global table.

5. BUILDER

2-55

Notes
• The -s and -o options must be specified together if either option is specified.
• When the -s, -o, and -a options are specified together, an error occurs.
• The following table shows the available option combinations:

Type

Parameter
Indirect link global

Registration Deletion
idxnum R R
name R R

O
pt

io
n

-u site Y Y
-s name Y Y
-o offset Y Y
-a Y Y
-d ‒ R

R: Required Y: Can be specified ‒: Cannot be specified

• Only addresses in the CM and GLB spaces can be specified in the -a option.
• If the specified offset is outside the split area that includes the secondary partition area specified

by the -s option, an error occurs.

Termination codes

The svirglb command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

6. MANAGEMENT TOOL

2-56

CHAPTER 6 MANAGEMENT TOOL

Name
svmap

Syntax

• Name
svmap name [name...] [-site sitename] -a [-e] [-f] [-CON] [-osrsv]

[-site sitename] -e [-f] [-CON] [-osrsv]

[-site sitename] -p [-f] [-CON] [-osrsv]

[-site sitename] -s [-f] [-CON] [-osrsv]

[-site sitename] -t [-f] [-CON] [-osrsv]

[-site sitename] -g [-f] [-CON] [-osrsv]

[-site sitename] -v [-f] [-osrsv]
• Number
svmap num [num...] [-site sitename] -irs [-f] [-CON] [-osrsv]

[-site sitename] -irg [-f] [-CON] [-osrsv]

[-site sitename] -uls [-f] [-CON] [-osrsv]

• Entire display
svmap [-site sitename] [-G] [-a] [-e] [+n] [+a] [-f] [-CON] [+gn gname] [-osrsv]

[-site sitename] [-a] [-e] [+n] [+a] [-f] [-CON] [-osrsv]

[-site sitename] [-e] [+n] [+a] [-f] [-CON] [-osrsv]

[-site sitename] [-p] [+n] [-f] [-CON] [-osrsv]

[-site sitename] [-s] [+n] [+e] [-f] [-CON] [-en] [-osrsv]

[-site sitename] [-t] [+n] [+e] [-f] [-CON] [-osrsv]

[-site sitename] [-g] [+n] [+e] [-f] [-CON] [-en] [-osrsv]

[-site sitename] [-v] [+n] [-f] [-en] [-osrsv]

[-site sitename] [-irs] [+n] [+e] [-f] [-CON] [-en] [-osrsv]

[-site sitename] [-irg] [+n] [+e] [-f] [-CON] [-en] [-osrsv]

[-site sitename] [-uls] [+n] [+e] [-f] [-CON] [-osrsv]

[-site sitename] [-en] [-f] [-CON] [-osrsv]

[-site sitename] [-fm] [-f] [-CON] [-osrsv]

Description

The svmap command outputs information about resources managed by RPDP. The information
about resources displays system information and user information regardless of the RSUTYP
settings.

6. MANAGEMENT TOOL

2-57

Arguments
name: Specifies the name of a resource to be displayed. At this time, the option that indicates the

name type cannot be omitted. You can specify multiple names.
num: Specifies the number of a resource to be displayed. You can specify multiple numbers. At

this time, the option that indicates the number type cannot be omitted.
When -irs or -irg is specified, specify the number of the IRSUB or IRGLB that you
want to display for num.
When -uls is specified, specify the built-in point and entry number for num. Specify the
built-in point and entry number in pnt, typ, and ent format (example: eas, os, l).

Options
-site sitename: Specifies the name of the site to which the map information is to be output. If

this option is omitted, svmap processes the site that is set in the environment
variable RSSITE.

-G: Outputs information about a global area. Combining this option with the -a and -e
options makes it possible to output the hierarchical map of global areas, split areas, and
secondary partition areas.

-a: Outputs information about a split area. Combining this option with the -e option makes it
possible to output the hierarchical map of split areas and secondary partition areas.

-e: Outputs information about a secondary partition area (an sarea of a GLB or CM, program,
or subprogram).

-p: Outputs information about programs.
-s: Outputs information about subprograms (IRSUBs and ULSUBs).
-t: Outputs information about tasks.
-g: Outputs global (GLB and CM) information.
-v: Outputs VAL information.
-irs: Outputs IRSUB entry information.
-irg: Outputs IRGLB entry information.
-uls: Outputs ULSUB entry information.
-en: Outputs information about the number of IRSUB, GLB (including CM), and VAL

registrations.
Specifying this option together with -s, -g, -v, -irs, and -irg displays only
information about the number of registrations of the specified items.

-f: Displays detailed information.
-fm: Outputs information about the available space in the physical memory.
-CON: Outputs the S10VE memory map. If this option is not specified, the map information

about resources managed by the development machine will be output.
-osrsv: Displays resources reserved by the OS. If this option is omitted, OS-reserved resources

are not displayed. Names beginning with osreserve are handled as OS-reserved
resources. Do not use such names.

-help: Displays a list that describes the command startup format.
+a: Outputs the results after sorting them by address.

6. MANAGEMENT TOOL

2-58

+n: Outputs the results after sorting them by name.
+e: Outputs the results after sorting them by entry number.
+gn gname: Specifies the global area name when only information about a specific global area is

output during output of a hierarchical map for a garea, an area, or an sarea. Specify a
name without a dollar sign ($) (such as TASK and IRSUB) as the global area name.

Table 2-6 shows the available option combinations that specify the type of resources to be
displayed (-G, -a, -e, -p, -s, -t, -g, -v, -irs, -irg, and -uls) and options that specify
the result output sequence (+a, +n, and +e), as well as the default output sequence when the +a,
+n, and +e options are omitted.
If all of the options that show the type of resources to be displayed (-G, -a, -e, -p, -s, -t, -g,
-v, -irs, -irg, and -uls) and -en, -fm, and -help are omitted, the command assumes that
the following options are specified:
-G -a -e -t -v -irs -irg -uls

Termination codes
0: Normal termination
Other than 0: Abnormal termination

Table 2-6 Available Combinations of Output Resources and Output Sequence, and

Default Output Sequences

Output resource
Output sequence

-G -a -e -p -s -t -g -v -irs -irg -uls

+a Y Y Y ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒
+n Y Y Y Y Y Y Y Y Y Y Y
+e ‒ ‒ ‒ ‒ Y Y Y ‒ Y Y Y
None (default) +a +a +a +n +n +e +n +n +e +e +e

Y: Can be combined ‒: Cannot be combined
+a: Address order (default) +n: Name order (default) +e: Numerical order (default)

6. MANAGEMENT TOOL

2-59

Name
svadm

Syntax
svadm [addr] [option]

Description

The svadm command outputs the name and other information about the resource (global or
IRSUB) registered at a specified logical address (for details, see Display formats).
When no logical address is specified, the command prompts the user to enter it interactively, and
displays names and other information.

Arguments

addr: For addr, specify a logical address in the range from 0x3000000 to 0x7bffffff (for the task
space, GLB space, subprogram space, CM space, or LADDER, USRFUNC, or HI-FLOW
space). If this argument is omitted, the user is prompted to enter a logical address
interactively.

Options
-u site: For site, specify the name of the site for which information on the area indicated by the

specified logical address is to be displayed. If this option is omitted, svadm processes
the site that is set in the environment variable RSSITE.

-o file: For file, specify the name of the file to which the operation result is to be output.

Termination codes

The svadm command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

6. MANAGEMENT TOOL

2-60

Operation

Explanation
The underlined text indicates data to be entered by the user.
XXXXX: Site name
addr: Specify the address that indicates the area from which the user wants to

acquire information.
q: The command is terminated.

#svadm addr

Information is displayed.

When an address is specified in the

#svadm

++ address information display start --> site(XXXXX) ++
addr : addr

Information is displayed.

addr : q
++ address information display end ++

When no address is specified in the

6. MANAGEMENT TOOL

2-61

Display formats
The following three display formats are supported.
 Format when a resource is registered at the specified address:

name = NAME type = TYPE raddr = XXXXXXXX

NAME: Resource name (sarea name, program name, or subprogram name)
TYPE: Resource type

task(TEXT): Text part of a task
task(DATA): Data part of a task
task(BSS): BSS part of a task
task(STACK): Stack of a task
sub: Subprogram
data: sarea of GLB
CM: sarea of CM area

XXXXXXXX: Offset from the beginning of the resource. For tasks, the offset is the relative
position from the beginning of the TEXT, DATA, BSS, or STACK area. For
subprograms, the offset is the relative position from the beginning of each
subprogram. For GLB and CM, the offset is the relative position from the
beginning of each sarea.

 Format when no resource is registered at the specified address:

lspace = SPACE external name is not defined

SPACE: GAREA name of the specified address

 Format when the specified address is out of the GAREA range

address error (0xXXXXXXXX)

XXXXXXXX: Specified address

This format is also shown when the address of the LADDER, USRFUNC, or
HIFLOW space is specified, because no area is defined in these cases.

6. MANAGEMENT TOOL

2-62

Name
svsitecntl

Syntax
svsitecntl [option]

Description

The svsitecntl command controls and displays the status of a specified site. When the -
rssrcv option is specified, recovery of the specified site is inhibited.

Options
-query [-sort]: Lists the sites registered with the development machine.

• Displaying by -query
When the -query option is specified, S10VE sites are displayed.
The following shows the output format.
When -sort is specified, sites are sorted and shown in alphabetical order
for each model.

++++++++++ S10VE site ++++++++++
0001cp is active
0001hp is active
0002cp is active
0002hp is active
1000cp is active
1000hp is active

-rssrcv site: Makes commands available without using RPDP recovery processing during

suspension by the ld subcommand of the svdebug command.
However, the ld subcommand of svdebug cannot be used.
(For details, see APPENDIX E NOTES ON USING RPDP.)

Termination codes

The svsitecntl command returns the following termination codes:
0: Normal termination
Other than 0: Abnormal termination

7. STARTUP AND PU CONTROL

2-63

CHAPTER 7 STARTUP AND PU CONTROL

Name
svrpl - Performs remote loading.

Syntax
svrpl [{-u site | -U unit}{-s}] [-all] [-r] [{-time|-notime}] [-ROMSV | -NOROMSV]
[-setpcsno]

Description

The svrpl command stops the specified site (PU) and transfers backup file data to the main
memory of the specified site (PU) on the S10VE to start the specified site. The following options
can be specified.

Options
-u site: Specifies the site to be loaded. If this option is omitted, svrpl processes the site that is

set in the environment variable RSSITE.
Specify the CPU name (the same name as the CP site name).

-U unit: Specifies the unit when all sites are to be loaded.
The -u and -U options are mutually exclusive.

-all: Downloads all backup files.

The following table lists the files that are downloaded depending on the specified options.

File
Option

OS TASK, SUB, GLB CM

-all Y Y Y
None Y Y Y

Y: Downloaded ‒: Not downloaded

-r: Does not start a specified site (PU) after loading is complete.
-s: Stops a specified site without prompting the user whether to stop the specified site (PU).

Specify this option together with the -u option.
If the -s option is omitted, svrpl prompts the operator to confirm whether to stop the
site at the time of a download.

-time: Sets the time when the specified site is CPU.
-notime: Does not set the time when the specified site is CPU.

Specify this option if you do not want to set the time.

7. STARTUP AND PU CONTROL

2-64

-ROMSV: Saves remotely loaded SDRAM data in the ROM (NAND flash).
-NOROMSV: Does not save remotely loaded SDRAM data in the ROM (NAND flash).

If neither -ROMSV nor -NOROMSV is specified, -ROMSV is assumed.
-setpcsno: Enables the function for setting the site name and PC number.

The svrpl command first displays the states of all PUs mounted in the unit to which the
specified site belongs. The command then checks whether the site (PU) to be downloaded can be
stopped. Typing yes when prompted here stops the specified site (PU) and starts downloading.
Typing no terminates the command with no action.

Notes

• The svrpl command does not download LADDER or HI-FLOW programs.
• Only the S10VE connected by the connection PCs change function of the BASE

SYSTEM/S10VE can be loaded by the svrpl command.
• The svrpl command cannot start an instance of S10VE for which the OS has never been

downloaded via the CPMS download of the BASE SYSTEM/S10VE. Be sure to load the OS
first via the CPMS download of the BASE SYSTEM/S10VE.

• If an HP site name is specified for the site name, an error message appears, and the command
terminates.

• If an error occurs during loading, the specified site (PU) is stopped and the command
terminates.

• If the specified site (PU) is not to be started after a download (the -r option is specified),
svrpl ignores the -time option if it is specified, and does not set the time.

• When the state control (svcpuctl) command sends a RUN request to the CPU, the time can
be set if the -time option is specified.

• When the -time option is not specified for downloading to the CPU, the time is not set.

7. STARTUP AND PU CONTROL

2-65

Site name and PC number setting function
When the SYSCB table of CPMS is loaded with the -setpcsno option specified, the site name
(sy_site) is rewritten with the loaded site name. This makes it possible to rewrite the site name of
the real machine with the PC number if the BASE SYSTEM/S10VE loads the site of each
generated PC number, by copying the base site to the real machine.
When the SYSCB table of CPMS is loaded with the -setpcsno option omitted, the site name
(sy_site) is not loaded. In this case, the site name of the real machine remains the site name that
was loaded (by the CPMS download of the BASE SYSTEM/S10VE) before it is loaded by the
svrpl command.
When the -setpcsno option is specified and the site for a PC number is loaded, the PC number
is written to the MRAM. The site name is recognized as a site for a PC number when the CP site
name is a 4-digit decimal number (0000 to 9998) + cp. When the CP site name is a number
other than a 4-digit decimal number (0000 to 9998) + cp or 9999cp, it is not recognized as a
site for a PC number, and no PC number is written to the MRAM.
When the -setpcsno option is omitted, no PC number is written to the MRAM.
When the -setpcsno option is specified, the -NOROMSV option cannot be specified.

Termination codes

The svrpl command returns the following termination codes:
0: Normal termination
1: Abnormal termination
2: Communication error
3: Suspension by Ctrl+C

7. STARTUP AND PU CONTROL

2-66

Name
svcpuctl - Controls the remote status.

Syntax
svcpuctl [{-u site} {-s{-stop | -run}] [-time] (status control)
svcpuctl [-u site] -ss (status display)

Description

The svcpuctl command controls the specified site (PU) or displays the status of the specified
site (PU). The following options can be specified.

Options for status control
-u site: Specify the name of the site to be handled. When this option is omitted, the site set in the

RSSITE environment variable is used.
Specify the CPU name (the same name as the CP site name).

-s: Omits the confirmation (a prompt that asks whether the user really wants to run the
command). Specify the -s option together with the -u option as necessary. If the -s
option is omitted, operation by an operator is assumed, and the user is prompted to
specify the status (STOP or RUN) interactively.

-stop: The specified site (PU) is placed in the CPU STOP status.
-run: The specified site (PU) is placed in the CPU RUN status. Specify the -run option

together with the -s option as necessary. The -run and -stop options are mutually
exclusive. Do not specify them together.

-time: For a CPU RUN request, sets the time when the specified site is CPU.
The svcpuctl command first displays the states of all PUs mounted in the unit to
which the specified site belongs. When users indicate the RUN or STOP status,
svcpuctl prompts them to specify whether they really want to change the specified
site to that status. To change the status of the specified site, enter yes. If you enter no,
svcpuctl does nothing and terminates.

Options for status display
-ss: The PU status (CPU RUN or STOP) of the specified site is displayed.

When the CP is in the CPU RUN state and the HP is in the CPU STOP state, RUN(HP
STOP) appears.

7. STARTUP AND PU CONTROL

2-67

Notes on use
• The svcpuctl command can control and display the state of only instances of S10VE

connected by the connection PC change function of the BASE SYSTEM/S10VE.
• If the HP site name is specified for the site name, an error message appears, and the command

terminates.
• The options for status control and for status display are mutually exclusive. Do not specify these

two types of options together.

Termination codes

The svcpuctl command returns the following termination codes:
0: Normal termination
1: Abnormal termination
2: Communication error
3: Suspension by Ctrl+C

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-68

CHAPTER 8 svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT
COMMANDS

Name
svdebug - Online debugger for S10VE

Syntax
svdebug [option]

Description

The svdebug command provides online debugging functionality for the S10VE.
When the svdebug command is started and terminated, it outputs the messages described
hereinafter.
When the site name prompt appears upon debugger startup, the command is ready to accept the
various subcommands.
If breakpoints are set in the S10VE when svdebug is run, the svdebug command displays the
setting of each breakpoint.

Message displayed when the debugger starts:
++ debugger start ++

break point

name = program-name raddr = program-internal-relative-address object = machine-language-instruction-pattern

.

.

name = program-name raddr = program-internal-relative-address object = machine-language-instruction-pattern

site-name>

Message displayed when the debugger terminates:
++ debugger end ++

Note: If the debugger is started with the -s option specified, the above messages are not

displayed.

Options
-i fname: Key-input results are output to the file specified by fname.
-o fname: The date and results of operation are output to the file specified by fname.
-r fname: Subcommands in the command file specified by fname are run. After all

subcommands are run, the svdebug command automatically terminates. The file
created by the -i option is used as a command file.

-s sub command: The subcommands specified by this option are run directly. After running the
subcommands, the svdebug command automatically terminates.

-u site: Specify the name of the site to be handled by the debugger. When this option is
omitted, the site set in the RSSITE environment variable is used.

-debug: Specifies a debug mode. Extended subcommands are usable.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-69

Termination codes
When it terminates normally, the svdebug command returns the value 0. When it terminates
abnormally, the command returns the value 1. However, if a subcommand specified by the -s
option terminates abnormally, the command returns the value 255.

Notes
 When multiple options are specified, the options specified after the -s option are interpreted as

subcommands and ignored.

Example
svdebug -i fname -s sub command: -i is interpreted as an option.
svdebug -s sub command -i fname: -i is interpreted as part of the subcommand

specified by the -s option.

 When the option specified in the svdebug command is not one of the options described in the

preceding Description section, the following usage information is displayed:

 When creating a key-input results file as the command file used by the -r option rather than

using the file specified by the -i option, note the following points:
• When data that does not conform to the subcommand specifications is set, the line that

contains the data is run without being checked.
• For subcommands that have interactive interfaces, enter data corresponding to the prompt

numbers for each operational step on a per-line basis.
• Blank lines in the command file are ignored, assuming that a subcommand line is not

encountered.

 When the -r option or -s option is used, breakpoint subcommands (br, rb, rr, rd, go, and
stickybr) cannot be used.

Usage: svdebug [options]
 Options:
 -i fname specify a “key-input result file”
 -o fname specify a “operation result file”
 -r fname specify a “command file”
 -s sub command “sub command” direct run
 -u site specify a “site name”
 -debug specify debug mode

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-70

 List of subcommands
Table 2-7 shows the functions of svdebug.

Table 2-7 Functions of svdebug

Classification Subcommand Function

Task starting or stopping

qu Requests that a task be started.

ab Prevents tasks from being started.

re Cancels the prevention of task startup.

ta Displays task status information.

su Suppresses task execution.

rs Cancels suppression of task execution.

tm Starts a task cyclically.

ct Cancels cyclic task startup.

sht Displays cyclic task startup.

Memory printing or
patching

md Displays or modifies the contents of memory in accordance with a specified address.

sd Displays or modifies the contents of memory in accordance with a specified name.

bs Sets data in specified bit positions.

bg Displays the data that exists in specified bit positions.

mcp Copies the contents of memory.

mmv Moves the contents of memory.

mf Sets pattern data in the memory.

Breakpoints

br/stickybr Sets or displays breakpoints.

rb Resets breakpoints.

rd Displays registers.

rr Changes the contents of registers.

go Resumes execution from a breakpoint.

System error display
el Displays error logs.

ss Displays system status information.

Current time setting or
display

st Sets the current time.

gt Displays the current time.

Uploading, downloading,
or comparisons

ld Transfers backup file data to the controller memory.

sv Transfers S10VE memory data to a backup file.

cm Compares the contents of a backup file with those of the memory in the S10VE.

Enabling or disabling
DHP logging

dr Enables DHP logging.

ds Disables DHP logging.

Ladder debug
functionality

lbr Sets and displays breakpoints.

lrb Resets breakpoints.

lrd Displays registers.

lrr Rewrites the contents of registers.

lgo Resumes execution from a breakpoint.

s Runs steps.

Other

si Initializes the stack.

sp Displays the amount of stack use.

svdhp Displays the DHP.

svadm Displays a resource name for an address.

ps Starts displaying debug statements.

pe Stops displaying debug statements.

ver Displays the version of the CPMS.

help Displays a list of subcommands.

q Terminates the debugger.

! Runs a command on the development machine at the time that svdebug is run.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-71

Name
qu - Requests that a task be started.

Syntax
qu tn[,fact]
qu tname[,fact]

Description

The qu subcommand starts the specified task. Specify the following parameters:
tn: Task number (1 to the maximum task number)
fact: Start factor (1 to 32)
tname: Task name

Result
OK(0): Normal termination
NG(≠0): Macro error

The macro return code is shown in (≠0).

Notes
 If fact is omitted, 0 is assumed.
 When this subcommand is started with no parameters specified or with invalid arguments

specified, the following message is displayed to prompt for parameters. Enter correct
parameters after the colon (:). If you enter e or press the Enter key in this state, the
subcommand process terminates.

input tn[,fact] or tname[,fact]
:

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-72

Name
ab - Prevents tasks from being started.

Syntax
ab tn1[-tn2]
ab tname

Description

The ab subcommand prevents the specified tasks from being started. Specify the following
parameters:

tn1: First task number (1 to the maximum task number)
tn2: Last task number (tn1 to the maximum task number)
tname: Task name

Result
OK(0): Normal termination
NG(≠0): Macro error

When tn1-tn2 is specified, however, the ab subcommand always terminates normally.
The macro return code is shown in (≠0).

Notes

When this subcommand is started with no parameters specified or with invalid arguments
specified, the following message is displayed to prompt for parameters. Enter correct parameters
after the colon (:). If you enter e or press the Enter key in this state, the subcommand process
terminates.

input tn1[-tn2] or tname
:

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-73

Name
re - Cancels the prevention of task startup.

Syntax
re tn1[-tn2]
re tname

Description

The re subcommand releases the specified tasks from the status in which task startup is
prevented. Specify the following parameters:

tn1: First task number (1 to the maximum task number)
tn2: Last task number (tn1 to the maximum task number)
tname: Task name

Result
OK(0): Normal termination
NG(≠0): Macro error

When tn1-tn2 is specified, however, the re subcommand always terminates normally.
The macro return code is shown in (≠0).

Notes

When this subcommand is started with no parameters specified or with invalid arguments
specified, the following message is displayed to prompt for parameters. Enter correct parameters
after the colon (:). If you enter e or press the Enter key in this state, the subcommand process
terminates.

input tn1[-tn2] or tname
:

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-74

Name
ta - Displays task status information.

Syntax
ta tn1[-tn2 [-s|-r]] [-susp]
ta tname [-susp]

Description

The ta subcommand displays status information about the specified tasks. When a specified task
is in the SUSPENDED state, in which task execution is suppressed, the contents of the registers
involved are also displayed. Specify the following parameters:

tn1: First task number (1 to the maximum task number)
tn2: Last task number (tn1 to the maximum task number)
tname: Task name
-s: Only task numbers, task names, and task status information are displayed.
-r: Status information about tasks that are not in the NON-EXISTENT, DORMANT, or IDLE
state is displayed.
-susp: Forcibly transitions the specified task that is not in the WAIT state or SUSPENDED

state to the SUSPENDED state and displays register information.
This option is available when the -debug option is specified upon svdebug startup.
Using this option in other cases results in an error.

The ta subcommand displays status information in the following format:

 Explanation of displayed information
tn: Task number (decimal or hexadecimal)
tname: Task name
task state: State of the task (The settings of status bits are displayed in hexadecimal.)
fact: Start factor of the task
level: Current task level (The value in parentheses is the initial task level.)
tcb top: First address of the TCB
task top: First address of the task
stack: Task stack range
contents-of-registers: When the task is in the SUSPENDED state, the contents of the registers

involved are displayed.

tn=*** (0x**) tname=************** task state=************ (0x********)

tcb top=0x******** fact=0x******** level=** (**)

task top=0x******** stack=0x********-0x********

(contents-of-registers)

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-75

The contents of registers are displayed in the following format:

Table 2-8 lists the task states, one of which is displayed for a task at a time.

Table 2-8 Task States

State Meaning
NON EXISTENT The task is not registered.
DORMANT Startup of the task is being prevented.
IDLE The task is waiting to be started.
READY The task is being run or is ready to be run.
WAIT The task is waiting for an event.
SUSPENDED Execution of the task is suppressed.

Table 2-9 shows the status bit strings and their meanings.

Table 2-9 Status Bit Strings

Status bit string Meaning
0x1 Multiple starts were requested.
0x10 Execution is being suppressed by DELAY.
0x20 Execution is being suppressed by SUSP.
0x40 The unlocking of resources that are being locked by RSERV or PRSRV

is being awaited.
0x80 Execution is being suppressed by a breakpoint.
0x1000 Processing by EXIT is in progress.
0x2000 Processing by RLEAS is pending.
0x4000 Processing by ABORT is in progress.
0x8000 Processing by QUEUE is pending.

Note: Multiple bits in each status bit string might be turned on at the same time.

SR =0x******** PC =0x******** GBR =0x******** PR =0x********

MACH=0x******** MACL=0x********

R0 =0x******** R1 =0x******** R2 =0x******** R3 =0x********

R4 =0x******** R5 =0x******** R6 =0x******** R7 =0x********

R8 =0x******** R9 =0x******** R10 =0x******** R11 =0x********

R12 =0x******** R13 =0x******** R14 =0x******** R15 =0x********

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-76

Notes
 When this subcommand is started with no parameters specified or with invalid arguments

specified, the following message is displayed to prompt for parameters. Enter correct
parameters after the colon (:). If you enter e or press the Enter key in this state, the
subcommand process terminates.

input tn1[-tn2 [-s|-r]] or tname
:

 When the -susp option is specified, the task range cannot be specified.
 If the task is in the DORMANT or NON-EXISTENT state when the -susp option is

specified, the system generates an error message and terminates the subcommand.
 When the -susp option is specified, the task is temporarily placed in the SUSPENDED state

to acquire register information, even if the task was not in the SUSPENDED state.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-77

Name
su - Suppresses task execution.

Syntax
su tn1[-tn2]
su tname

Description

The su subcommand suppresses execution of the specified tasks. Specify the following
parameters:

tn1: First task number (1 to the maximum task number)
tn2: Last task number (tn1 to the maximum task number)
tname: Task name

Result
OK(0): Normal termination
NG(≠0): Macro error

When tn1-tn2 is specified, however, the su subcommand always terminates normally.
The macro return code is shown in (≠0).

Notes

When this subcommand is started with no parameters specified or with invalid arguments
specified, the following message is displayed to prompt for parameters. Enter correct parameters
after the colon (:). If you enter e or press the Enter key in this state, the subcommand process
terminates.

input tn1[-tn2] or tname
:

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-78

Name
rs - Cancels suppression of task execution.

Syntax
rs tn1[-tn2]
rs tname

Description

The rs subcommand releases the specified tasks from the state in which task execution is
suppressed. Specify the following parameters:

tn1: First task number (1 to the maximum task number)
tn2: Last task number (tn1 to the maximum task number)
tname: Task name

Result
OK(0): Normal termination
NG(≠0): Macro error

When tn1-tn2 is specified, however, the rs subcommand always terminates normally.
The macro return code is shown in (≠0).

Notes

When this subcommand is started with no parameters specified or with invalid arguments
specified, the following message is displayed to prompt for parameters. Enter correct parameters
after the colon (:). If you enter e or press the Enter key in this state, the subcommand process
terminates.

input tn1[-tn2] or tname
:

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-79

Name
tm - Starts a task cyclically.

Syntax
tm
id:
tn[,fact]: (or tname[,fact])
t,cyct:
(or)
tm
id:
tn[,fact]: (or tname[,fact])
t:

Description

The tm subcommand starts the specified task cyclically. When tm is started, subprompts are
displayed. Specify the following parameters:

id: Type of the timer task to be started (1 to 4)
tn: Task number (1 to the maximum task number)
tname: Task name
fact: Start factor (1 to 32)
t: Time of day or length of time relative to the current time when the timer event is started

for the first time. The relative time must be specified in milliseconds within the
following range:
When id is 1 or 3: 1 to 86,400,000
When id is 2 or 4: 0 to 86,399,999

cyct: Interval at which events are generated cyclically. The interval must be specified in
milliseconds within the range of 1 to 86,400,000.

For more information about id, t, and cyct, see Table 2-10.

Result
OK(0): Normal termination
NG(≠0): Macro error

The macro return code is shown in (≠0).

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-80

Notes
 If the fact parameter is omitted, 0 is assumed.
 If you enter e or press the Enter key while the system is waiting for parameter input, the

subcommand terminates.

Table 2-10 Explanation of the id, t, and cyct Parameters

Timer event id t cyct Explanation

Length-of-time
basis

1 Relative time up to the
start time, measured
from the current time of
day

 After the length of time specified by
the t parameter elapses, the task
specified by the tn or tname parameter
is started.

Time-of-day basis 2 Time of day at which
the task is started,
measured from 00:00

 The task specified by the tn or tname
parameter is started at the time
specified by the t parameter.

Length-of-time
and cycle basis

3 Relative time up to the
start time, measured
from the current time of
day (relative time up to
the first start)

Interval at which the
task is started cyclically
after the first start

After the length of time specified by
the t parameter elapses, the task
specified by the tn or tname parameter
is started. The task is then started
cyclically at the interval specified by
the cyct parameter.

Time-of-day and
cycle basis

4 Time of day at which
the task is started,
measured from 00:00
(time of day at the first
start)

Interval at which the
task is started cyclically
after the first start

The task specified by the tn or tname
parameter is started at the time
specified by the t parameter. The task
is then started cyclically at the interval
specified by the cyct parameter.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-81

Name
ct - Cancels cyclic task startup.

Syntax
ct tn[,fact]
ct tname[,fact]

Description

The ct subcommand cancels the cyclic startup of the specified task. Specify the following
parameters:

tn: Task number (1 to the maximum task number)
fact: Start factor (1 to 32)
tname: Task name

Result
OK(0): Normal termination
NG(≠0): Macro error

The macro return code is shown in (≠0).

Notes
 When the fact parameter is omitted, 0 is assumed.
 When this subcommand is started with no parameters specified or with invalid arguments

specified, the following message is displayed to prompt for parameters. Enter correct
parameters after the colon (:). If you enter e or press the Enter key in this state, the
subcommand process terminates.

input tn[,fact] or tname[,fact]
:

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-82

Name
sht - Displays cyclic task startup.

Syntax
sht

Description

The sht subcommand displays the cyclic startup of all currently selected tasks.

Result

Cyclic task startup is displayed in the following form:

ID: Timer type
TN: Task number
FACT: Start factor
TIME: Start time (year.month.day hour:minute:second.millisecond)
CYT: Cycle (in milliseconds)

Notes

Multiple instances of the sht subcommand cannot be started simultaneously for the same site.

ID TN FACT TIME CYT
* *** ** ****/**/** **:**:**.*** ********
 .
 .
 .

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-83

Name
md - Displays or modifies the contents of memory in accordance with a specified address.

Syntax
md
1 storage(s,m,*) : {s}
 {m}
 {*}
 {e}
 {Enter}
2 addr : {addr1 [-addr2] [-h |-d |-f] [-l |-w |-b] [-all |-omit]}
 {addr1 [-addr2] [-fd] [-all |-omit]}
 {addr1 [,len] [-h |-d |-f] [-l |-w |-b] [-all |-omit]}
 {addr1 [,len] [-fd] [-all |-omit]}
 {*n}
 {e}
0xaaaaaaaa 0xdddddddd : {data}
 {Enter}
 {e}

Note: The underlined portions are to be entered by the user.

Description

The md subcommand displays or modifies the contents of memory specified by a logical address.
When this subcommand is started, subprompts are displayed. Respond to each subprompt as
follows:
1 storage(s,m,*)
s: The backup file is modified or displayed.
m: Memory in the controller is modified or displayed.
Enter: Memory in the controller is modified or displayed.
*: Both the backup file and memory in the real machine are modified.
e: The subcommand is instructed to terminate.

Note: When storage=* is specified, data in the backup file is displayed.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-84

2 addr
addr1-addr2: Data from the first display address (addr1) to the last display address (addr2) is

displayed.
addr1,len: Data is displayed for the number of bytes specified by len, starting from the first

display address (addr1).
-h: Data is displayed in hexadecimal.
-d: Data is displayed in decimal.
-f: Data is displayed in single-precision floating-point format.
-fd: Data is displayed in double-precision floating-point format.
-l: The data length is set to four bytes.
-w: The data length is set to two bytes.
-b: The data length is set to one byte.
-all: Specifies that an abbreviated display mode is not to be used when there are two or more

consecutive lines of the same data.
-omit: Specifies that an abbreviated display mode is to be used when there are two or more

consecutive lines of the same data.
*n: Control is returned to the preprocessing indicated by the prompt number n (where n =

1).
e: The subcommand is instructed to terminate.

0xaaaaaaaa 0xdddddddd

data: Specify a new value as the data to be modified.
Enter: No data is changed.
e: Control returns to 2 addr.

Notes
 When the addr2 or len parameter is not specified in 2 addr, data change (patch) mode is

enabled. When either parameter is specified, data display (print) mode is enabled. Upon
completion of data display, the user is prompted for input again in 2 addr.

 When neither a data output format option nor a data length option is specified, the last options
specified in this subcommand are used. By default, the -h and -l options are used, that is,
four-byte data is displayed in hexadecimal.

 The values specifiable in data change (patch) mode depend on the combination of the specified
data output format option and data length option. Table 2-11 shows the combinations of
specifiable values and options.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-85

Table 2-11 Relationships between Specifiable Values and Options

size
fmt

-l -w -b No specification

-h ○ ○ ○ ‒
-d ○ ○ ○ ‒
-f ◎ ○ ○ ‒
-fd × × × ◎

No specification ‒ ‒ ‒ ‒

fmt: Data output format size: Data size

 After data is displayed or changed by specifying -fd (double-precision floating-point format)

as the data output format, data can be displayed or changed, with either the data output format
or data size option omitted. When the data output format option is omitted, -h (hexadecimal
format) is assumed. When the data size option is omitted, -l (four bytes) is assumed.

 If s is specified for 1 storage and an address at which no backup file exists is specified for
2 addr, the system displays an error message and waits for 2 addr input.

 In data display (print) mode, the display format depends on the combination of the specified
data output format option and data length options, as shown in Table 2-12.

Table 2-12 Display Formats Depending on the Combination of Options

size

fmt
-l -w -b No specification

-h h/4 h/2 h/1 ‒
-d d/4 d/2 d/1 ‒
-f f/4 h/2 h/1 ‒
-fd × × × f/8

No specification ‒ ‒ ‒ ‒

fmt: Data output format size: Data size

○: Octal, decimal, or hexadecimal numbers
can be specified.

◎: Real numbers can be specified.
‒: Specifiable values depend on the values of

the previously specified data output format
and size.

×: Invalid combination

fmt/size: fmt: h (hexadecimal)
 d (decimal)
 f (floating-point)
 size: byte size
‒: Specifiable values depend on the values of

the previously specified data output format
and size.

×: Invalid combination

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-86

 Figure 2-4 shows the memory access range allowed for the md subcommand that displays
(reads) or modifies (writes) the contents of memory. However, spaces are inaccessible if they
are not mapped in the physical memory.

Figure 2-4 Memory Access Range

 md supports the dynamic display function in the data display (print) mode. Figure 2-5 shows

the operation procedure for dynamic display.

Pressing the S, n, and Enter keys starts dynamic display.
For n, specify the interval time (in ms) for dynamic display. If n is omitted, the
interval time becomes 0 ms. A value in the range from 0 to 60000 can be
specified for n.
During monitoring, only the S key can be used.
Dynamic display is terminated. (Key operation becomes possible.)

Figure 2-5 Operation Procedure for Dynamic Display

 S [n] Enter

S

Press

Press

 User space Kernel space

0x
00

00
 0

00
0

0x
00

01
 0

00
0

0x
02

00
 0

00
0

0x
02

50
 0

00
0

0x
03

00
 0

00
0

0x
03

10
 0

00
0

0x
04

00
 0

00
0

0x
04

A
0

00
00

0x
0c

00
 0

00
0

0x
18

00
 0

00
0

0x
1c

80
 0

00
0

0x
1c

90
 0

00
0

0x
20

00
 0

00
0

0x
28

00
 0

00
0

0x
30

00
 0

00
0

0x
40

00
 0

00
0

0x
50

00
 0

00
0

0x
60

00
 0

00
0

0x
70

00
 0

00
0

0x
75

00
 0

00
0

0x
78

00
 0

00
0

0x
7b

00
 0

00
0

0x
7C

00
 0

00
0

0x
80

00
 0

00
0

R
es

er
ve

d

S
10

 s
pa

ce

R
es

er
ve

d

R
es

er
ve

d

M
R

A
M

R
es

er
ve

d

O
P

T

P
R

M

R
es

er
ve

d

S
ys

te
m

 b
us

 s
pa

ce

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

M
A

P

C
P

M
S

 s
pa

ce

T
A

S
K

G
L

B
R

G
L

B
R

W

IR
S

U
B

C
M

R
es

er
ve

d

L
A

D
D

E
R

U
S

R

F
U

N
C

H
I-

F
L

O
W

P
2

to
 P

4
ar

ea
s

: Accessible

: Inaccessible
AREA AREA AREA AREA AREA AREA

AREA
SAREA SAREA

AREA
SAREA SAREA

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-87

Name
sd - Displays or modifies the contents of memory in accordance with a specified task name,

subprogram name, program name, or global name.

Syntax
sd
1 name : {name [-t |-s |-g |-b |-w]}
 {e}
2 storage(s,m,*) : {s}
 {m}
 {*}
 {*n}
 {e}
 {Enter}
3 baddr : {addr [-h |-d |-f] [-l |-w |-b] [-all |-omit]}
 {addr [-fd] [-all|-omit]}
 {*n}
 {e}
4 raddr : {addr1 [-addr2 |-*]}
 {addr1 [,len |,*]}
 {*}
 {*n}
 {e}
0xaaaaaaaa(0xllllll) 0xdddddddd : {data}
 {Enter}
 {e}

Note: The underlined portions are to be entered by the user.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-88

Description
The sd subcommand displays or modifies the contents of memory specified by a task name,
subprogram name, program name, or global name. When this subcommand is started, subprompts
are displayed. Respond to each subprompt as follows:
1 name

name: Name for which memory is displayed or modified
-t: The name specified by name is handled as a program name. The relative address is

handled as the address counted from the beginning of the text.
-s: The name specified by name is handled as a subprogram name.
-g: The name specified by name position is handled as the secondary partition area

(SAREA) name of the global data.
-b: Specifies that the BSS area of a program corresponding to the program name specified

by name is to be handled. The relative address is the address counted from the
beginning of the BSS area for a specified program.

-w: The stack area of the task identified by the name specified by name is handled. The
relative address is the address counted from the beginning of the stack area for the
specified task.

e: The subcommand is instructed to terminate.
Note: When none of the -t, -s, -g, -b, and -w options are specified, -g is assumed.
2 storage(s,m,*)
s: The backup file is modified or displayed.
m: Memory in the real machine is modified or displayed.
Enter: Memory in the real machine is modified or displayed.
*: Both the backup file and memory in the real machine are modified.
*n: Control is returned to the preprocessing indicated by the prompt number n (where n =

1).
e: The subcommand is instructed to terminate.
Note: When storage=* is specified, data in the backup file is displayed.
3 baddr

addr: Specify an address relative to the beginning of the area to be modified or displayed.
*n: Control is returned to the preprocessing indicated by the prompt number specified in n

(where n = 1 or 2).
-h: Data is displayed in hexadecimal.
-d: Data is displayed in decimal.
-f: Data is displayed in floating-point format.
-fd: Data is displayed in double-precision floating-point format.
-l: The data length is set to four bytes.
-w: The data length is set to two bytes.
-b: The data length is set to one byte.
-all: Specifies that an abbreviated display mode is not to be used even when there are two or

more consecutive lines of the same data.
-omit: Specifies that an abbreviated display mode is to be used when there are two or more

consecutive lines of the same data.
e: The subcommand is instructed to terminate.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-89

4 raddr
addr1-addr2: Data from the first display address (addr1) to the last display address (addr2) is

displayed. (These addresses are counted starting from addr of baddr.)
addr1,len: Data is displayed for the number of bytes specified by len, starting from the first

display address (addr1). (The address is counted starting from addr of baddr.)
addr1,*: The area indicated by the specified symbol is displayed, starting from the first

display address (addr1) and continuing up to the end of the area. (The address is
counted starting from addr of baddr.)

addr1-*: The area indicated by the specified symbol is displayed, starting from the first
display address (addr1) and continuing up to the end of the area. (The address is
counted, starting from addr of baddr.)

*: The entire area indicated by the specified symbol is displayed.
*n: Control is returned to the preprocessing indicated by the prompt number n (where n = 1, 2,

or 3).
e: The subcommand is instructed to terminate.

0xaaaaaaaa(0xllllll) 0xdddddddd

data: Specify a new value as the data to be modified.
Enter: No data is changed.
e: Control is returned to 4 raddr.

Notes
 When only the addr1 parameter is specified in 4 raddr, data change (patch) mode is enabled.

Other combinations of specified parameters enable data display (print) mode. Upon completion
of data display, the user is prompted for input again in 4 raddr.

 When neither a data output format option nor a data length option is specified, the last options
specified in this subcommand are used. By default, the -h and -l options are used, that is,
four-byte data is displayed in hexadecimal.

 The areas that can be displayed or modified by sd are secondary partition areas (SAREAs)
allocated in the global area when a global name is specified. When a program or subprogram
name is specified, the displayable or modifiable area is the text and data sections, the bss
section, or the stack section.

 The values specifiable in data change (patch) mode depend on the combination of the specified
data output format option and data length option. Table 2-11 shows the relationships between
specifiable values and options.

 For the display format of the data display (print), the combinations of the data output format
and data length options are the same as that for the md subcommand.

 As with the md subcommand, the sd subcommand supports the dynamic display function in
the data display (print) mode. For more information about dynamic display operation, see the
section on the md subcommand.

 If an area containing no backup file is specified for 1 name and s is specified for 2
storage, the system displays an error message and waits for 2 storage input.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-90

Name
bs - Sets data in specified bit positions.

Syntax
bs
1 storage(s,m,*) : {s}
 {m}
 {*}
 {e}
 {Enter}
2 addr : {addr}
 {*n}
 {e}
3 bit : {bit1, len}
 {bit1-bit2}
 {*n}
 {e}
4 data : {data}
 {*n}
 {e}

Note: The underlined portions are to be entered by the user.

Description

The bs subcommand sets data at the bit positions that have the specified addresses. When this
subcommand is started, subprompts are displayed. Respond to each subprompt as follows:
1 storage(s,m,*)
s: Data is set in bits in the backup file.
m: Data is set in bits in memory in the real machine.
Enter: Data is set in bits in memory in the real machine.
*: Data is set in bits in both the backup file and memory in the real machine.
e: The subcommand is instructed to terminate.
2 addr
addr: Specify the address of memory in which to set data.
*n: Control is returned to the preprocessing indicated by the prompt number n (where n = 1).
e: The subcommand is instructed to terminate.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-91

3 bit
bit1, len: Data is set in bits whose length is specified by len, starting from the first bit number

(bit1).
bit1-bit2: Data is set in bits from the first bit number (bit1) to the last bit number (bit2).
*n: Control is returned to the preprocessing indicated by the prompt number n (where n = 1, 2,

or 3).
e: The subcommand is instructed to terminate.
4 data

data: Specify data to be set. When the data starts with 0x or 0X, it is handled as hexadecimal
data. Otherwise, the data is handled as binary data.
Specify as many patterns as the number of specified bits.

*n: Control is returned to the preprocessing indicated by the prompt number n (where n = 1, 2,
or 3).

e: The subcommand is instructed to terminate.

Notes
 The user can modify the contents of memory within the same range as that for the md

subcommand.
 If s is specified for 1 storage and an address at which no backup file exists is specified for
2 addr, the system displays an error message and waits for 2 addr input.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-92

Name
bg - Displays the data that exists in specified bit positions.

Syntax
bg
1 storage(s,m,*) : {s}
 {m}
 {*}
 {e}
 {Enter}
2 addr : {addr}
 {*n}
 {e}
3 bit : {bit1, len}
 {bit1-bit2}
 {*n}
 {e}
Note: The underlined portions are to be entered by the user.

Description

The bg subcommand displays data at the specified bit positions. When this subcommand is
started, subprompts are displayed. Respond to each subprompt as follows:

1 storage(s,m,*)
s: Bit data is read from the backup file.
m: Bit data is read from memory in the real machine.
Enter: Bit data is read from memory in the real machine.
*: Bit data is read from both the backup file and memory in the real machine.
e: The subcommand is instructed to terminate.
Note: When storage=* is specified, backup file data is displayed.
2 addr

addr: Specify the address of memory from which to read bit data.
*n: Control is returned to the preprocessing indicated by the prompt number n (where n = 1).
e: The subcommand is instructed to terminate.
3 bit

bit1, len: Data in bits whose length is specified by len is displayed, starting from the first bit
number (bit1).

bit1-bit2: Data in bits from the first bit number (bit1) to the last bit number (bit2) is displayed.
*n: Control is returned to the preprocessing indicated by the prompt number n (where n = 1 or

2).
e: The subcommand is instructed to terminate.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-93

Result
The contents of memory are displayed in the following format:

0xNNNNNNNN: Address
c: 1, 0, or *. When the specified bit position is out of range, * is displayed.

After the contents of memory are displayed, the user is prompted for input again in 2 addr.

Notes
 The user can display the contents of memory within the same range as that for the md

subcommand.
 If s is specified for 1 storage and an address at which no backup file exists is specified for
2 addr, the system displays an error message and waits for 2 addr input.

 a d d r 0 1 2 3 4 5 6 7 8 9 a b c d e f
0xNNNNNNNN c c c c c c c c c c c c c c c c

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-94

Name
mcp - Copies the contents of memory.

Syntax
mcp
1 storage(s,m,*) : {s}
 {m}
 {*}
 {e}
 {Enter}
2 s_addr : {addr1,len}
 {addr1-addr2}
 {*n}
 {e}
3 d_addr : {addr}
 {*n}
 {e}

Note: The underlined portions are to be entered by the user.

Description

The mcp subcommand copies the contents of memory or the backup file to a specified address.

1 storage(s,m,*)
s: The backup file is copied.
m: Memory in the object machine is copied.
Enter: Memory in the object machine is copied.
*: Both the backup file and memory in the object machine are copied.
e: The subcommand is instructed to terminate.
2 s_addr

addr1,len: A copy is made starting from address addr1. len specifies the number of bytes to be
copied.

addr1-addr2: A copy is made starting from address addr1 and ending at address addr2.
*n: Control is returned to the preprocessing indicated by the prompt number n (where n = 1).
e: The subcommand is instructed to terminate.
3 d_addr

addr: Specify the first address of the destination area to which a copy is sent.
*n: Control is returned to the preprocessing indicated by the prompt number n (where n = 1 or

2).
e: The subcommand is instructed to terminate.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-95

Notes
 The mcp subcommand displays the following confirmation message after the destination

address is entered in 3 d_addr but before a copy starts.

Enter a y or Y to start a copy. The following messages appear when a copy starts and
terminates. If another character is entered, control is returned to the prompt in 2 s_addr
without a copy being made.

At the start of copying ***** memory copy start *****

At the end of copying ***** memory copy end *****

 When an odd-numbered address is entered, 1 is subtracted from the address to make it an even-

numbered address.
 At the end of memory copying, control is returned to the prompt in 2 s_addr.
 When s or * is specified for 1 storage and an address at which no backup file exists is

specified, the system displays an error message and waits for 2 s_addr input.
 The memory access range allowed for mcp is indicated by the shaded areas in the following

figure. Unlike md, bs, and bg, mcp does not access the R700 system bus space or S10 space.
Furthermore, it cannot access spaces that are not mapped in the physical memory.

Figure 2-6 Memory Access Range

Message corresponding to the storage type

copy : 0x********-0x******** -> 0x********-0x********
memory data copy ok ? (y/n) :

Range of source addresses Range of destination addresses

Message corresponding to
the storage type

storage type = s: backup file
m: memory
*: memory and backup file

 User space Kernel space

0x
00

00
 0

00
0

0x
00

01
 0

00
0

0x
02

00
 0

00
0

0x
02

50
 0

00
0

0x
03

00
 0

00
0

0x
03

10
 0

00
0

0x
04

00
 0

00
0

0x
04

A
0

00
00

0x
0c

00
 0

00
0

0x
18

00
 0

00
0

0x
1c

80
 0

00
0

0x
1c

90
 0

00
0

0x
20

00
 0

00
0

0x
28

00
 0

00
0

0x
30

00
 0

00
0

0x
40

00
 0

00
0

0x
50

00
 0

00
0

0x
60

00
 0

00
0

0x
70

00
 0

00
0

0x
75

00
 0

00
0

0x
78

00
 0

00
0

0x
7b

00
 0

00
0

0x
7C

00
 0

00
0

0x
80

00
 0

00
0

R
es

er
ve

d

S
10

 s
pa

ce

R
es

er
ve

d

R
es

er
ve

d

M
R

A
M

R
es

er
ve

d

O
P

T

P
R

M

R
es

er
ve

d

S
ys

te
m

 b
us

sp

ac
e

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

M
A

P

C
P

M
S

 s
pa

ce

T
A

S
K

G
L

B
R

G
L

B
R

W

IR
S

U
B

C
M

R
es

er
ve

d

L
A

D
D

E
R

U
S

R

F
U

N
C

H
I-

F
L

O
W

P
2

to
 P

4
ar

ea
s

: Accessible

: Inaccessible
AREA AREA AREA AREA AREA AREA

AREA

SAREA SAREA

AREA

SAREA SAREA

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-96

Name
mmv - Moves the contents of memory.

Syntax
mmv
1 storage(s,m,*) : {s}
 {m}
 {*}
 {e}
 {Enter}
2 s_addr : {addr1,len}
 {addr1-addr2}
 {*n}
 {e}
3 d_addr : {addr}
 {*n}
 {e}

Note: The underlined portions are to be entered by the user.

Description

The mmv subcommand moves the contents of memory and clears the source to zero.

1 storage(s,m,*)
s: The contents of the backup file are moved.
m: Contents of memory in the object machine are moved.
Enter: Contents of memory in the object machine are moved.
*: The contents of both the backup file and memory in the object machine are moved.
e: The subcommand is instructed to terminate.
2 s_addr

addr1,len: A move is made starting from address addr1. len specifies the number of bytes to be
moved.
addr1-addr2: A move is made starting from address addr1 and ending at address addr2.
*n: Control is returned to the preprocessing indicated by the prompt number n (where n = 1).
e: The subcommand is instructed to terminate.
3 d_addr

addr: Specify the first address of the destination area to which to move contents.
*n: Control is returned to the preprocessing indicated by the prompt number n (where n = 1 or

2).
e: The subcommand is instructed to terminate.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-97

Notes
 The mmv subcommand displays the following confirmation message after the destination

address is entered in 3 d_addr but before a move starts.

Enter a y or Y to start a move. The following messages appear when a move starts and
terminates. If another character is entered, control is returned to the prompt in 2 s_addr
without a move being made.

At the start of a move ***** memory move start *****
At the end of a move ***** memory move end *****

 When an odd-numbered address is entered, one is subtracted to make it an even-numbered

address.
 The memory access range allowed for mmv is the same as that for mcp.
 At the end of moving contents of memory, control is returned to the prompt in 2 s_addr.
 If s or * is specified for 1 storage and an address at which no backup file exists is

specified, the system displays an error message and waits for 2 s_addr input.

Message corresponding to the storage type

move : 0x********-0x******** -> 0x********-0x********
memory data move ok ? (y/n) :

Range of source addresses Range of destination addresses

Message corresponding to
the storage type

storage type = s: backup file
m: memory
*: memory and backup file

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-98

Name
mf - Sets pattern data in the specified address range.

Syntax
mf
1 storage(s,m,*) : {s}
 {m}
 {*}
 {e}
 {Enter}
2 addr : {addr1,len [-l/-w/-b]}
 {addr1-addr2 [-l/-w/-b]}
 {*n}
 {e}
3 data : {data}
 {*n}
 {e}

Note: The underlined portions are to be entered by the user.

Description

The mf subcommand sets pattern data within a given address range.

1 storage(s,m,*)
s: Pattern data is set in the backup file.
m: Pattern data is set in memory in the object machine.
Enter: Pattern data is set in memory in the object machine.
*: Pattern data is set in both the backup file and memory in the object machine.
e: The subcommand is instructed to terminate.
2 addr

addr1,len: Pattern data is set for the number of cases specified by len, starting from address
addr1.
addr1-addr2: Pattern data is set, starting from address addr1 and ending at address addr2.
*n: Control is returned to the preprocessing indicated by the prompt number n (where n = 1).
e: The subcommand is instructed to terminate.
-l: The data length is set to 4 (bytes).
-w: The data length is set to 2 (bytes).
-b: The data length is set to 1 (byte).

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-99

3 data
data: Specify data to be set.
*n: Control is returned to the preprocessing indicated by the prompt number n (where n = 1 or

2).
e: The subcommand is instructed to terminate.

Notes
 If no data length is specified, the data length in the mf command specified last is used. The

default is -l (four bytes).
 The mf subcommand displays the following confirmation message after pattern data is set in 3
data but before the setting of the pattern data starts.

Enter a y or Y to start the setting of pattern data. If another character is entered, control is
returned to the prompt in 2 addr without pattern data being set.

 If the specified address is not on a data-length boundary, the value of the address is

decremented accordingly.
 The specifiable address range allowed for mf is the same as the memory access range for mcp.
 After pattern data is set in the memory, control is returned to the prompt in 2 addr.
 If s or * is specified for 1 storage and an address at which no backup file exists is specified

for 2 addr, the system displays an error message and waits for 2 addr input.

Range of addresses to set pattern data Pattern data (hexadecimal)

write : 0x********-0x******** pattern data = 0x********
memory data write ok ? (y/n) :

Message corresponding to
the storage type

storage type = s: backup file
m: memory
*: memory and backup file

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-100

Name
el - Displays error logs.

Syntax
el [-u site] [-f {s|m|l}] [-logno] [+count] [-o fname]

Description

The el subcommand starts the svelog command to display error logs. For more information
about the el subcommand, see the command specifications of the svelog command.

Name
ss - Display system status information.

Syntax
ss

Description

The ss subcommand starts the svcpuctl command to display system status information. For
more information about the ss subcommand, see the command specifications of the svcpuctl
command.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-101

Name
st - Sets the current time.

Syntax
st [yyyy.mm.dd.hh:mt:ss]

Description

The st subcommand sets the time as managed by the S10VE as the current time. Specify the
following parameters:

yyyy: Year (four digits)
mm: Month
dd: Day
hh: Hours
mt: Minutes
ss: Seconds
Note: Enter each part of the time data as decimal values.

Result
OK(0): Normal termination

Notes
 When the time setting parameters (yyyy.mm.dd.hh:mt:ss) are not specified in this

subcommand, the following message is displayed to prompt the user for them. If you enter e or
press the Enter key in this state, the subcommand process terminates.
YYYY.MM.DD.HH:MT:SS :

 When this subcommand is run directly with the -s option and an error occurs, no error
message is displayed.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-102

Name
gt - Displays the current time.

Syntax
gt

Description

The gt subcommand displays the current time as managed by the S10VE.

Result

The current time is displayed in the following format:
yyyy.mm.dd.hh:mt:ss
yyyy: Year (four digits)
mm: Month
dd: Day
hh: Hours
mt: Minutes
ss: Seconds

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-103

Name
br - Sets or displays breakpoints.
stickybr

Syntax
br [pname break1 ... break5 [-t|-s]]
stickybr [pname break1 … break5 [-t|-s]]

Description

The br and stikybr subcommands set breakpoints or display breakpoints that are set.
Breakpoints can only be set in a task program (TEXT space) and indirect link subprogram (TEXT
space).
When a break occurs in a task, the task goes into the WAIT state. In this case, the task cyclic start
timer continues running so that timer startup takes place. However, the task stays in the WAIT
state unless execution is resumed from a breakpoint.
While a task is stopped due to a breakpoint, no break occurs at the other breakpoints. The other
breakpoints become valid when the task stopped due to a break is resumed.
The following parameters are specified:

pname: Specifies the name of the program for which breakpoints are to be set.
break1 to break5: Specifies breakpoints (relative addresses in a program).
-t: Indicates that the specified program name is a program name for a task.
-s: Indicates that the specified program name is a subprogram name.
Note: When the -t and -s options are not specified, a search will be conducted in the task and

subprogram order.

Result

The following message appears when breakpoint setup is completed normally:

break point set

name = program-name raddr = program-internal-relative-address object = machine-language-instruction-pattern

When pname and break are not specified, br displays the currently set breakpoints as follows:

break point

name = program-name raddr = program-internal-relative-address object = machine-language-instruction-pattern

name = program-name raddr = program-internal-relative-address object = machine-language-instruction-pattern *BREAK*

.

.

An error message appears if breakpoint setup is being performed by another terminal.

This mark appears for a breakpoint at
which execution is currently halted.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-104

Notes
 Up to five breakpoints can be set for each site.
 When a breakpoint is reached, the following message appears:

break!!
tn = task-number pname = program-name raddr = program-internal-relative-address

 If rb, rd, rr, go, or a similar subcommand terminates abnormally, you must issue only br to

check the breakpoint status. This makes it possible to align the breakpoint information of the
development machine with the information of the S10VE if the two sets of information do not
match.

 After the S10VE is restarted, the breakpoint information that was set by the br subcommand
before the S10VE stopped is not stored. In this case, you must issue only br to adjust the
breakpoint information of the development machine for the S10VE. The breakpoint that was
set by the stickybr subcommand is not reset even by restarting the S10VE with a reset start.

 No breakpoint can be set for the RPC server task, system initial start task (SIST), and built-in
subroutines.

 This subcommand can be used when the -debug option is specified to start svdebug. When
the subcommand is used in other situations, an error occurs.

 If the execution machine differs from the development machine in breakpoint setup due to a
S10VE restart or abnormal debugger termination, proceed as follows:
Run the br subcommand with no parameter specified. When any breakpoint setup remains
after execution, clear it with the rb subcommand.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-105

Usage example
The following describes the breakpoint setup procedure.
• The following example explains the procedure for setting a breakpoint at point (1) in situations

where a task program named prog is generated from prog1.c and prog2.c.

prog1.c

prog2.c

extern char glb01_g[1024]; /* 1024byte */

void ans_print(int ans)
{

int ret;

ret = rs_printf(&glb01_g[0] , “anser = %d\n” , ans);

return;
}

main()
{
 int a, b, c;
 int ret;

 a = 10;
 b = 20;

 c = add(a , b);
 ans_print(c);

 exit();
}

int add(int a , int b)
{
 int ans;

 ans = a + b; (1)

 return(ans);
}

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-106

• A C-language source file can be inserted into an assembler source when source compilation is
performed with the -SH=SO -1 option specified. prog1.lst is referenced in order to set a
breakpoint in the prog1.c source.
Because the C-language source for breakpoint setup is (1), the assembler instruction (2), which
immediately follows (1), corresponds to the C-language source.
The offset in the corresponding instruction source (prog1.c) is 0x00000026.

prog1.lst

(The figure continues on the next page.)

************ OBJECT LISTING ************

FILE NAME: prog1.c

SCT OFFSET CODE C LABEL INSTRUCTION OPERAND COMMENT

prog1.c 1 main()
P 00000000 _main: ; function: main
 ; frame size=8

00000000 2FE6 MOV.L R14,@-R15
00000002 4F22 STS.L PR,@-R15

prog1.c 2 {
prog1.c 3 int a, b, c;
prog1.c 4 int ret;
prog1.c 5
prog1.c 6 a = 10;
prog1.c 7 b = 20;
prog1.c 8
prog1.c 9 c = add(a , b);

00000004 E514 MOV #20,R5 ; H'00000014
00000006 DE09 MOV.L L12,R14 ; H'FFE7FFFF
00000008 B00D BSR _add
0000000A E40A MOV #10,R4 ; H'0000000A
0000000C 016A STS FPSCR,R1

prog1.c 10 ans_print(c);
0000000E D208 MOV.L L12+4,R2 ; _ans_print
00000010 6403 MOV R0,R4
00000012 21E9 AND R14,R1
00000014 420B JSR @R2
00000016 416A LDS R1,FPSCR

prog1.c 11
prog1.c 12 exit();

00000018 D606 MOV.L L12+8,R6 ; _exit
0000001A 076A STS FPSCR,R7
0000001C 27E9 AND R14,R7
0000001E 476A LDS R7,FPSCR
00000020 4F26 LDS.L @R15+,PR
00000022 462B JMP @R6
00000024 6EF6 MOV.L @R15+,R14

prog1.c 13 }
prog1.c 14
prog1.c 15 int add(int a , int b)

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-107

00000026 _add: ; function: add
 ; frame size=0

prog1.c 16 {
prog1.c 17 int ans;
prog1.c 18
prog1.c 19 ans = a + b; (1)
prog1.c 20
prog1.c 21 return(ans);

00000026 345C ADD R5,R4 (2)
prog1.c 22 }

00000028 000B RTS
0000002A 6043 MOV R4,R0
0000002C L12:
0000002C FFE7FFFF .DATA.L H'FFE7FFFF
00000030 <00000000> .DATA.L _ans_print
00000034 <00000000> .DATA.L _exit

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-108

• When the svload command is run with the -P option specified to generate an executable
program, a map file will be generated.
If you check SECTION=P in the map, you will see that prog1.obj begins with 0x3003c014.
Because the internal relative address for breakpoint setup of the source is 0x00000014, the
breakpoint setup address is 0x3003c028 (= 0x3003c014 + 0x00000014).
The internal relative address of the program can be determined from the breakpoint setup
address and the start address of the program, and is therefore 0x00000028 (= 0x3003c028 -
0x3003c000).

prog.map

SECTION=P
FILE=C:\WINDOWS\renix\tmp\str2545.obj
 3003c000 3003c013 14
 __start
 3003c000 0 none ,g *
 L237
 3003c00c 0 none ,l *
FILE=prog1.obj
 3003c014 3003c037 24
 _main
 3003c014 14 func ,g *
 _add
 3003c028 10 func ,g *
FILE=prog2.obj
 3003c038 3003c04f 18
 _ans_print
 3003c038 18 func ,g *
FILE=cpms_exit
 3003c050 3003c09f 50
 _exit
 3003c098 0 none ,g *
FILE=rpdp_rsprintf
 3003c0a0 3003c113 74
 _rs_printf
 3003c0a0 74 func ,g *
FILE=rpdp_rssetmsg
 3003c114 3003c16b 58
 _rssetmsg
 3003c160 0 none ,g *
FILE=sprintf
 3003c16c 3003c19b 30
 _sprintf
 3003c16c 30 func ,g *

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-109

Name
rb - Resets breakpoints.

Syntax
rb [pname break1 ... break5 [-t|-s]]

Description

The rb subcommand resets the currently set breakpoints. If no parameter is specified, rb resets
all the currently set breakpoints. The following parameters can be specified:

pname: Specifies the name of the program for which breakpoints are to be set.
break1 to break5: Specifies breakpoints (relative address in a program).
-t: Indicates that the specified program name is a program name of a task.
-s: Indicates that the specified program name is a subprogram name.
Note: When the -t and -s options are not specified, a search will be conducted in the task and

subprogram order.

Result

The following message appears when a breakpoint reset is completed normally:

break point reset

name = program-name raddr = program-internal-relative-address object = machine-language-instruction-pattern

An error message appears if breakpoint setup is being performed by another terminal.

Notes
 This subcommand can be used when the -debug option is specified to start svdebug. If the

subcommand is used in other situations, an error occurs.
 If any task is halted at a breakpoint, that breakpoint cannot be reset.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-110

Name
rd - Display registers.

Syntax
rd [-f | -h]

Description

The rd subcommand displays the contents of registers prevailing at a breakpoint. If no parameter
is specified, the floating-point registers are excluded from the resulting on-screen information.
The following parameters can be specified:
-f: Displays the contents of floating-point registers as real numbers.
-h: Displays the contents of floating-point registers in hexadecimal format.

Result
OK(0): Normal termination.

rd displays the contents of the registers as follows.
When abnormally terminated, rd displays an error message.

When the -f option is specified, rd displays the contents of floating-point registers in the form
of a real number as indicated below:

SR =0x******** PC =0x******** GBR =0x******** PR =0x********
MACH=0x******** MACL =0x******** FPUL =0x******** FPSCR =0x********
R0 =0x******** R1 =0x******** R2 =0x******** R3 =0x********
R4 =0x******** R5 =0x******** R6 =0x******** R7 =0x********
R8 =0x******** R9 =0x******** R10 =0x******** R11 =0x********
R12 =0x******** R13 =0x******** R14 =0x******** R15 =0x********

FR0 =**.*******E*** FR1 =**.*******E*** FR2 =**.*******E*** FR3 =**.*******E***
FR4 =**.*******E*** FR5 =**.*******E*** FR6 =**.*******E*** FR7 =**.*******E***
FR8 =**.*******E*** FR9 =**.*******E*** FR10=**.*******E*** FR11=**.*******E***
FR12 =**.*******E*** FR13=**.*******E*** FR14=**.*******E*** FR15=**.*******E***
XF0 =**.*******E*** XF1 =**.*******E*** XF2 =**.*******E*** XF5 =**.*******E***
XF4 =**.*******E*** XF5 =**.*******E*** XF6 =**.*******E*** XF7 =**.*******E***
XF8 =**.*******E*** XF9 =**.*******E*** XF10=**.*******E*** XF11=**.*******E***
XF12 =**.*******E*** XF13=**.*******E*** XF14=**.*******E*** XF15=**.*******E***
DR0 =**.***************E**** DR2 =**.***************E****
DR4 =**.***************E**** DR6 =**.***************E****
DR8 =**.***************E**** DR10=**.***************E****
DR12 =**.***************E**** DR14=**.***************E****
XD0 =**.***************E**** XD2 =**.***************E****
XD4 =**.***************E**** XD6 =**.***************E****
XD8 =**.***************E**** XD10=**.***************E****
XD12 =**.***************E**** XD14=**.***************E****

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-111

When the -h option is specified, rd displays the contents of floating-point registers in
hexadecimal notation.

Register descriptions

SR: Status register.
PC: Program counter.
GBR: Global base register. This register is for storing the base address of a GBR indirect with

displacement or GBR indirect with index for use in addressing.
PR: Procedure register used to call a subroutine. If the executed program is at the end of

subroutine calling, this register stores a return address.
MACH: System register (sum-of-products upper-level register) used to store the addition value of

the MAC instruction (sum-of-products operation) and the results of the execution of
MAC and MUL instructions. When the operation result is a 64-bit value, this register
stores the most significant 32 bits. When the operation result is a 32-bit value, this
register stores 32 bits.

MACL: System register (sum-of-products lower-level register). When the operation result is a
64-bit value, this register stores the least significant 32 bits.

FPUL: Floating-point communication register.
FPSCR: Floating-point status and control register.
R0-R15: General-purpose registers (the R15 is used as a stack pointer).
FR0-FR15: Single-precision floating-point registers. This register represents the

FPRxx_BANK0 value when FPSCR.PR (the 19th bit value of bits 31-0) = 0 or the
FPRxx_BANK1 value when FPSCR.PR = 1.

XF0-XF15: Single-precision floating-point extended registers. This register represents the
FPRxx_BANK1 value when FPSCR.PR (the 19th bit value of bits 31-0) = 0 or the
FPRxx_BANK0 value when FPSCR.PR = 1.

DR0-DR15: Double-precision floating-point registers. This register represents the
FPRxx_BANK0 value when FPSCR.PR (the 19th bit value of bits 31-0) = 0 or the
FPRxx_BANK1 value when FPSCR.PR = 1.

XD0-XD15: Double-precision floating-point extended registers. This register represents the
FPRxx_BANK1 value when FPSCR.PR (the 19th bit value of bits 31-0) = 0 or the
FPRxx_BANK0 value when FPSCR.PR = 1.

FR0 =0x******** FR1 =0x******** FR2 =0x******** FR3 =0x********
FR4 =0x******** FR5 =0x******** FR6 =0x******** FR7 =0x********
FR8 =0x******** FR9 =0x******** FR10=0x******** FR11=0x********
FR12=0x******** FR13=0x******** FR14=0x******** FR15=0x********
XF0 =0x******** XF1 =0x******** XF2 =0x******** XF5 =0x********
XF4 =0x******** XF5 =0x******** XF6 =0x******** XF7 =0x********
XF8 =0x******** XF9 =0x******** XF10=0x******** XF11=0x********
XF12=0x******** XF13=0x******** XF14=0x******** XF15=0x********
DR0 =0x******** 0x******** DR2 =0x******** 0x********
DR4 =0x******** 0x******** DR6 =0x******** 0x********
DR8 =0x******** 0x******** DR10=0x******** 0x********
DR12=0x******** 0x******** DR14=0x******** 0x********
XD0 =0x******** 0x******** XD2 =0x******** 0x********
XD4 =0x******** 0x******** XD6 =0x******** 0x********
XD8 =0x******** 0x******** XD10=0x******** 0x********
XD12=0x******** 0x******** XD14=0x******** 0x********

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-112

Notes
 This subcommand can be used when the -debug option is specified to start svdebug. If the

subcommand is used in other situations, an error occurs.
 Even when a real-number display mode is selected, this subcommand displays the contents of

registers in hexadecimal format if the floating-point data is as indicated below. The
subcommand also displays the associated character string after the hexadecimal number
display.

Floating-point data
Character

string

Display example

Single precision Double precision

Non-numeric Na FR0 = 0x7fffffff:Na DR0 = 0xfff 00000 0x00000001:Na

Infinite In FR0 = 0x7f800000:In DR0 = 0xfff 00000 0x00000000:In

Maximum expressible value Ma FR0 = 0x7f7fffff:Ma DR0 = 0x7fefffff 0xffffffff:Ma

Minimum expressible value Mi FR0 = 0xff7fffff:Mi DR0 = 0xffefffff 0xffffffff:Mi

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-113

Name
rr - Changes the contents of registers.

Syntax
rr
register : rx
data : datax

Note: The underlined portions are to be entered by the user.

Description

The rr subcommand changes the contents of a register when it is halted at a breakpoint.
rx: Specifies the abbreviated name of the register whose contents are to be changed. Use the

abbreviated register name that appears upon rd subcommand execution.
datax: Specifies the data to be changed. (Octal, decimal, hexadecimal, and real-number data can

be specified.) For double-precision floating-point registers, only real-number data input
is possible.

Result
OK(0): Normal termination.

When abnormally terminated, rr displays an error message.

Notes
 The rr subcommand is valid only when a task is halted at a breakpoint.
 This subcommand can be used when the -debug option is specified to start svdebug. If the

subcommand is used in other situations, an error occurs.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-114

Name
go - Resumes execution from a breakpoint.

Syntax
go

Description

The go subcommand resumes a program at an address at which the program was halted due to a
breakpoint. The breakpoint resets after the program is resumed.

Result
OK(0): Normal termination.

When abnormally terminated, the go subcommand displays an error message.

Notes
 The go subcommand is valid only when a task is halted at a breakpoint.
 This subcommand can be used when the -debug option is specified to start svdebug. If the

subcommand is used in other situations, an error occurs.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-115

Name
ld - Transfers backup file data to the S10VE memory.

Syntax
ld {-t tname}
ld {-s sname}
ld {-g gname}
ld {-a aname}
ld {-m addr,len}
ld {-T [tno]}
ld {-U [point,ent]}
ld {-S [sno]}
ld {-G [gno]}
ld {-dcm}
ld {-cm}
ld {-f fname}

Description

The ld subcommand transfers the contents of a backup file to memory in the S10VE, the file that
is specified by one of the options listed below.
-t tname: The program specified by tname is downloaded. A task is created for tname on the

S10VE. When the program specified by tname is a multitask program, as many tasks
as are required are also created on the S10VE.

-s sname: The subprogram specified by sname is loaded.
This option downloads the subprogram itself, and also downloads entries of the
indirect link resident subprogram address table or entries of the built-in subroutine
management table. When the subprogram specified by sname is registered as a
multi-entry IRSUB, all the entries in the indirect link resident subprogram address
table corresponding to the IRSUB entry points are downloaded.

-g gname: The global data specified by gname is downloaded. When the global data is indirect
global data, the associated entry for the indirect link global address table is also
downloaded.

-a aname: The contents of the split area specified by aname are downloaded. The split area
specified by aname must have been defined in the GLB area and CM area.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-116

-m addr,len: Data of len bytes is downloaded, starting from the first address specified by addr.
When the specified address range includes a non-allocated space, downloading
does not take place.

-T [tno]: The task that has the task number specified by tno is deleted from or created on the
S10VE. If tno identifies a task that has been created on the development machine,
this option creates a task for tno. If tno identifies a task that has not been created on
the development machine, the option deletes the task. When tno is omitted, a list is
displayed that shows the tasks for which creation or deletion on the development
machine is not reflected on the S10VE.

-U [point,ent]: The entry for the built-in subroutine management table specified by point and
ent is downloaded. Specify point and ent as follows:
point: This character string indicates the location where the built-in subroutine

is incorporated. Specify CPES, IES, EAS, INS, EXS, ABS, PCKS,
MODES, WDTES, or XEAS.

ent: This is an entry number from 1 to 4.
When both point and ent are omitted, a list is displayed that shows the built-in
subroutine management table entries for which registration or deletion on the
development machine is not reflected on the S10VE.

-S [sno]: The indirect link resident subprogram address table entry specified by sno is
downloaded. When sno is omitted, a list is displayed that shows the indirect link
resident subprogram address tables for which registration or deletion on the
development machine is not reflected on the S10VE.

-G [gno]: The indirect link global address table specified by gno is downloaded. When gno is
omitted, a list is displayed that shows the indirect link global address tables for which
registration or deletion on the development machine is not reflected on the S10VE.

-dcm: Only areas allocated in the DCM are downloaded. Because this is an extension
option, it cannot be used with the S10VE.

-cm: Only areas allocated in the CM are downloaded.
-f fname: The contents of the file specified by fname are downloaded. Only the name of the file

output by the sv subcommand can be specified by fname.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-117

Result
When resources are downloaded by ld, the result is displayed upon completion of downloading.
The following paragraphs explain the results of ld with regard to each option.

(1) -t tname (downloading an individual program)

The first line shows the main unit address. The second and subsequent lines show the TCB
addresses at which a download was performed due to task generation or deletion. (When the
old task exists, the first line shows the old TCB address, the second line shows the main unit
address, and the third line shows the new TCB address.)
For a multitask, the display shows all the TCB addresses for downloading.

(2) -s sname (downloading an individual subprogram)
The result is displayed in a different way according to the type of the downloaded
subprogram.
 IRSUB

The range of addresses where the IRSUB was downloaded is displayed in the format below.
The first line shows the address of the subprogram, while the second line shows the address
of the indirect link resident subprogram address table.
When the IRSUB has multiple entries, the addresses of all indirect link resident subprogram
address tables to be downloaded are displayed.

 Built-in subroutine
The range of addresses where the subroutine was downloaded is displayed together with the
entry for the built-in subroutine management table, in the following format.
address is the address of the downloaded built-in subroutine, while point,ent is the
include point representing the downloaded entry for the built-in subroutine management
table and the entry number.

For POINT, one of the following character strings, each of which represents an include
point, is displayed: CPES, IES, EAS, INS, EXS, ABS, PCKS, MODES, WDTES, and XEAS.
For N, an entry number from 1 to 4 is displayed.

address : 0x********-0x********
address : 0x********-0x********

address : 0x********-0x********
address : 0x********-0x********

address : 0x********-0x********
point,ent : POINT,N

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-118

(3) -g gname (downloading individual global data)
The range of addresses where global data was downloaded is displayed in the format below.
When the global data is indirect link global data, the address of the indirect link global address
table is also displayed.
When the global data specified by gname is registered as multiple indirect link global data
items, the addresses of all indirect link global address tables are displayed.

(4) -a aname (downloading an individual split area)
The range of addresses where the split area was downloaded is displayed in the following
format:

(5) -m addr,len (address-based downloading)
The range of addresses where downloading was performed is displayed in the following
format:

(6) -T tno (reflecting task creation or deletion in memory in the controller)
 When task generation or deletion is reflected in the controller memory

The display shows the TCB addresses at which a download was performed due to task
generation/deletion.

 When a list of the tasks requiring reflection of their memory images in memory in the
controller whenever necessary is requested for display:
When only the -T option is specified, a list is displayed in the format below. This list
shows the tasks that need to be reflected in memory in the controller.

tn, tname, pname, and stat in the above list represent the task number, task name, program
name, and management state of the task, respectively. Table 2-13 explains the management
states. When different task numbers are used for a task in the unmatch management state on
the development machine and on the S10VE, the task number on the development machine
is displayed.

address : 0x********-0x********

address : 0x********-0x********

address : 0x********-0x********

address : 0x********-0x********

TN TNAME PNAME STATUS
tn tname pname stat

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-119

Table 2-13 Management States of Resources

No.
Management

state
Description

1 non-exist Registered in neither the development machine nor the S10VE.
2 not-build Loaded by a subprogram but not built.
3 defined-POC Registered in the development machine only.
4 defined Registered in both the development machine and S10VE.
5 defined-CON Registered in the S10VE only.

Deleted from the development machine after downloading into the S10VE.
6 unmatch Registered in both the development machine and S10VE but mismatched.

Deleted or reregistered at the development machine but not downloaded.
7 non-exist2 Build information in the S10VE memory was deleted by the subprogram in the

defined-CON state, but has not been downloaded from the development machine.
8 defined-CON2 Build information was downloaded by the subprogram in the defined-CON state

from the development machine, but remains in the S10VE memory.

(7) -U point, ent (downloading a built-in subroutine management table)
 When a built-in subroutine management table was downloaded:

The entry of the updated built-in subroutine management table is displayed in the following
format:

 When a list of the built-in subroutine management tables requiring reflection in memory in
the S10VE is requested for display:
When only the -U option is specified, a list is displayed in the format below, the list that
shows the built-in subroutine management tables that need to be reflected in memory in the
controller.

pnt, eno, subname, and stat in the above list represent an include point, entry number,
subprogram name, and management state of the built-in subroutine management table entry,
respectively. Table 2-13 explains the management states.
As the management state of the built-in subroutine management table entry, defined-POC,
defined-CON, not-build, non-exist2, or unmatch is displayed.
When different include points are used for a built-in subroutine management table entry in
the unmatch state on the development machine and that on the controller, the include point
on the development machine is displayed.

address : 0x********-0x********

POINT ENT SUBNAME STATUS
pnt eno subname stat

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-120

(8) -S sno (downloading an indirect link resident subprogram address table)
 When an indirect link resident subprogram address table was downloaded:

The address of the downloaded indirect link resident subprogram address table is displayed
in the following format:

 When a list of the indirect link resident subprogram address tables requiring reflection in
memory in the S10VE is requested for display:
When only the -S option is specified, a list is displayed in the format below, the list that
shows the indirect link resident subprogram address tables that need to be reflected in
memory in the S10VE.

sno, entname, subname, and stat in the above list represent an IRSUB number, entry name,
subprogram name, and management state of the IRSUBT entry. Table 2-13 explains the
management states.
When different IRSUB numbers are used for an IRSUBT entry in the unmatch state on the
development machine and that on the S10VE, the IRSUB number on the development
machine is displayed. When different subprogram names are used, the subprogram name on
the development machine is also used.

(9) -G gno (downloading an indirect link global address table)
 When an indirect link global address table was downloaded:

The address of the downloaded indirect link global address table (IRGLBT) is displayed in
the following format:

address : 0x********-0x********

IRSBNO ENTNAME SUBNAME STATUS
sno entname subname stat

address : 0x********-0x********

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-121

 When a list of the indirect link global address tables requiring reflection in memory in the
S10VE is requested for display:
When only the -G option is specified, a list is displayed in the format below, the list that
shows the indirect link global address tables that need to be reflected in memory in the
S10VE.

gno, entname, sname, and stat in the above list represent an indirect link global number,
entry name, secondary partition area, and management state of the indirect link global
address table entry, respectively. Table 2-13 explains the management states.
When different indirect link global numbers are used for an indirect link global address
table entry in the unmatch state on the development machine and that on the S10VE, the
indirect link global number on the development machine is displayed.
When different secondary partition area names are used, the secondary partition area name
on the secondary partition area is also used.

(10) -cm (downloading CM)
The range of addresses where downloading was performed is displayed in the following
format:

Downloading to the CM is enabled only when the S10VE is in the STOP state.
Only the CM backup data of the execution site is downloaded to the CM.

(11) -f fname (downloading from the specified file)
The range of addresses where downloading was performed is displayed in the following
format:

IRGLBNO ENTNAME SNAME STATUS
gno entname sname stat

address : 0x********-0x********

address : 0x********-0x********

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-122

Notes
 Before replacing a resource, abort all tasks that reference the resource or take a similar action,

so that the replacement will not cause a problem.
 When a resource is downloaded with the -a or -m option, be sure to download the

management table with the -T, -U, -S, or -G option and also create or delete tasks.
 If a resource or area containing no backup file is specified without specifying the file name

with the -f option, the system displays an error message and terminates the subcommand.
 If the failure recovery process is skipped, the individual loading function of the ld

subcommand cannot be exercised until batch loading is performed by the svrpl command.
 Programs and subprograms for which a breakpoint is set cannot be downloaded.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-123

Name
sv - Transfers S10VE memory data to a backup file.

Syntax
sv {-t tname [-f fname]}
sv {-s sname [-f fname]}
sv {-g gname [-f fname]}
sv {-a aname [-f fname]}
sv {-m addr,len [-f fname]}

Description

The sv subcommand transfers the contents of memory in the S10VE to a backup file as specified
by the following options.
-t tname: The text and data sections of the program specified by tname are transferred.
-s sname: The text and data sections of the subprogram specified by sname are transferred.
-g gname: The contents of the secondary partition area specified by gname are transferred.
-a aname: The contents of the split area specified by aname are transferred. The split area

specified by aname must have been defined in the GLB area and CM area.
-m addr,len: Data is transferred for the number of bytes specified by len, starting from the first

address specified by addr.
When the specified address range includes a non-mapped space, a transfer does
not take place.

-f fname: Data is transferred to the file specified by fname.
When this option is omitted, data is transferred to the backup file.
When an error is detected during saving, the specified file is deleted and this
subcommand is terminated.

Result

The range of addresses where data was transferred is displayed in the following format:

When transferring to a file other than the backup file, make sure that the file is in the following
format:

32-byte header is followed by binary data.
The header consists of the following character strings:

svdebug∆********∆********\0\0...\0\0
 First address Size

******** is an eight-digit hexadecimal number.
\0 is NULL (0).
∆ is a blank character (0X20).

address : 0x********-0x********

Header

Data

32 bytes

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-124

Notes
 When transferring CM data to the backup file, only the data of the CM allocated to the local

site can be transferred.
 If an area that does not contain the backup file is specified without specifying a file name by

the -f option, an error message is output and the subcommand is terminated.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-125

Name
cm - Compares the contents of a backup file with those of the memory in the S10VE.

Syntax
cm {-t tname}
cm {-s sname}
cm {-g gname}
cm {-a aname}
cm {-m addr,len}
cm {-f fname}

Description

The cm subcommand compares the contents of a backup file with those of memory in the S10VE.
Use the following options to specify the comparison target.
-t tname: The text and data sections of the program specified by tname are compared.
-s sname: The text and data sections of the subprogram specified by sname are compared.
-g gname: The contents of the secondary partition area specified by gname are compared.
-a aname: The contents of the split area specified by aname are compared. The split area

specified by aname must have been defined in the GLB area and CM area.
-m addr,len: Data is compared for the number of bytes specified by len, starting from the first

address specified by addr.
When the specified address range includes a non-allocated space, a comparison
does not take place.

-f fname: The file specified by fname is compared with the contents of memory. (Only the file
to which an output is made by the sv subcommand can be specified.)

Result

When the comparison result is normal, the address range is displayed in the following format:

When a mismatch is found during comparison, the result is displayed one word (two bytes) at a
time, as follows:

address : 0x********-0x********
++ compare OK ++

address : 0x********-0x********
address = 0x******** memory data = 0x**** backup data = 0x****

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-126

Notes
 CM data and backup file data can be compared only in the CM allocated to the local site.
 If an area containing no backup file is specified without specifying the file name with the -f

option, the system displays an error message and terminates the subcommand.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-127

Name
dr - Enables DHP logging.

Syntax
dr

Description

The dr subcommand starts the svdhp command to enable DHP logging. For details on the dr
subcommand, see the specifications for the -on option of the svdhp command.

Name
ds - Disables DHP logging.

Syntax
ds

Description

The ds subcommand starts the svdhp command to disable DHP logging.
For details on the ds subcommand, see the specifications for the -off option of the svdhp
command.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-128

Name
svdhp - Displays the DHP.

Syntax
svdhp [-u site] [+count] [-on|-off] [-o fname] [-f fname] [-all [fname]]

Description

The svdhp subcommand starts the svdhp command to display the DHP.
For details on the svdhp subcommand, see the section on the svdhp command.

Name
svadm - Displays a resource name for an address.

Syntax
svadm [addr] [-u site]

Description

The svadm subcommand starts the svadm command to display the name and other information
about a specified logical address.
For details on the svadm subcommand, see the section on the svadm command.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-129

Name
si - Initializes the stack.

Syntax
si tn1[-tn2][,data]
si tname[,data]

Description

The si subcommand initializes the stack of the specified task with a fixed pattern. Specify the
following parameters:

tn1: First task number (1 to the maximum task number)
tn2: Last task number (tn1 to the maximum task number)
tname: Task name
data: Initialization data (0 to 9, a to f)

Result
OK(0): Normal termination

Notes
 When nothing is specified in data, the stack is initialized with all f values.
 The task for which initialization is to be performed must be in the DORMANT state.
 The stack of the specified task can be initialized only within the range of the first address of the

page on which the stack is present to the last address of the stack. (See the following figure.)

 When this subcommand is started with no parameters specified or with invalid arguments

specified, the following message is displayed to prompt for parameters. Enter correct
parameters after the colon (:).
If you enter e or press the Enter key in this state, the subcommand process terminates.

input tn1[-tn2] [,data] or tname [,data]
:

STACK

TASK

BSS

Task space

Area within which
initialization is possible.

Page boundary Page boundary

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-130

Name
sp - Displays the amount of stack use.

Syntax
sp tn1[-tn2][,data]
sp tname[,data]

Description

The sp subcommand displays the size of the stack used by the specified task. Specify the
following parameters:

tn1: First task number (1 to the maximum task number)
tn2: Last task number (tn1 to the maximum task number)
tname: Task name
data: Check pattern (0 to 9, a to f)

Result

The size of the stack used by the task is displayed in the following format:

Notes
 The check pattern specified in data must be the same as the initialization data specified in the
si subcommand. When the check pattern parameter (data) is omitted, 0xf is assumed.

 The used stack size is calculated from the address at which a pattern other than the check
pattern specified in the data parameter appears in the page area in the stack used by the
specified task. For this reason, if the pattern at the beginning of the stack is the same as the
check pattern, the used stack size cannot be displayed correctly.

 The following figure shows the relationship between the information displayed by sp and the
task operation space.

tn=*** total:********bytes use:********bytes rest:********bytes

Task number Total stack size Used stack size Unused stack size

STACK

TASK

BSS

Task space

(1)

(3) (2)

Fixed pattern
(1) Total stack size
(2) Used stack size
(3) Unused stack size

Location where a
pattern other than the
fixed pattern appears Page boundary Page boundary

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-131

 When this subcommand is started with no parameters specified or with invalid arguments
specified, the following message is displayed to prompt for parameters. Enter correct
parameters after the colon (:).
If you enter e or press the Enter key in this state, the subcommand process terminates.

input tn[-tn2] [-data] or tname [-data]
:

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-132

Name
ps - Starts displaying debug statements.

Syntax
ps

Description

The ps subcommand instructs that the messages output by rs_printf() within a program should
start appearing on the terminal display.
Debug statements output prior to the execution of the ps subcommand do not appear on the
display.
(For more information about rs_printf(), see APPENDIX B LIBRARIES.)

Result

The debug statement display sequence starts after normal process termination.

Notes

If the buffer for debug statement storage is not sufficient, the subcommand might fail to output
debug statements.

Name
pe - Stops displaying debug statements.

Syntax
pe

Description

The pe subcommand stops the messages output by rs_printf() within a program from appearing
on the terminal display. (For more information about rs_printf(), see APPENDIX B
LIBRARIES.)

Result

The debug statement display sequence stops after normal process termination.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-133

Name
ver - Displays the version of the CPMS.

Syntax
ver [-m|-s]

Description

The ver subcommand displays the version of the CPMS and KROM. The following options are
provided.
-m: Displays the version information in the S10VE memory.
-s: Displays the version information in the development machine.

When these options are omitted, both of these version information items are displayed.

Result

The version of the CPMS and MP farm appears in the following format upon normal process
termination.

Notes
 When the version information in the development machine is displayed, the MP firmware

version is not displayed.
 Only the character string indicating the revision is displayed for the MP firmware version.
 An optional character string XXXX (such as -A) is displayed following the CPMS version. If no

character string is set, null is displayed.
 When the CPMS has not been downloaded to the S10VE, Ver.-- Rev.-- is displayed.

Secondary version:
CPMS Ver.** Rev.** XXXX
Memory version:
CPMS Ver.** Rev.** XXXX
KROM Rev.**

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-134

Name
lbr - Sets and displays breakpoints in ladder programs.

Syntax
lbr addr [tn]

Description

The lbr subcommand sets a breakpoint in a ladder program. Only a single breakpoint can be set.
For addr, specify the address of the breakpoint of the LADDER space.
Specify tn (a task number) when setting a breakpoint only for the ladder program run from a
specific task. If tn is omitted or is set to 0, a breakpoint is set for ladder programs run from all
tasks.
When the breakpoint is reached, the ladder program suspends the processing immediately before
running the breakpoint instruction. While the ladder program is breaking, execution of all ladder
programs is inhibited.
If addr and tn are omitted, the currently set breakpoint and break status are displayed.

Result

When a breakpoint has been successfully set, the following message appears:

0xXXXXXXXX: Address at which breakpoint is set
xxx: Task number of the task that detects that the breakpoint has been reached

The currently set breakpoint is displayed as follows:

0xXXXXXXXX: Address at which breakpoint is set
xxx: Task number of the task that detects that the breakpoint has been reached

When a breaking ladder program is present, the following message is displayed:

0xXXXXXXXX: Address at which break is present
xxx: Task number of the task that detects that the breakpoint has been reached
0xYYYYYYYY: Next instruction to be run

break point set
addr = 0xXXXXXXXX tn = xxx

break point
addr = 0xXXXXXXXX tn = xxx

break on 0xXXXXXXXX(tn = xxx)
0xXXXXXXXX 0xYYYYYYYY

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-135

Name
lrb - Resets breakpoints of ladder programs.

Syntax
lrb

Description

The lrb subcommand resets the breakpoint setting in the ladder programs.

Result

The following message appears when a breakpoint reset is completed normally:

0xXXXXXXXX: Address at which breakpoint is set
xxx: Task number of the task that detects that the breakpoint has been reached

break point reset
addr = 0xXXXXXXXX tn = xxx

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-136

Name
lrd - Displays the contents of the registers of ladder processors.

Syntax
lrd [-h]

Description

The lrd subcommand displays the contents of the registers of breaking ladder programs. When
the -h option is specified, floating-point registers are shown as hexadecimal numbers.

Result

The following floating-point data is converted to hexadecimal numbers, and the converted data is
then displayed. Furthermore, a corresponding character string is shown following each
hexadecimal number.

Floating-point data Character string Display example

Non-numeric Na FR0 = 0x7fffffff:Na
Infinite In FR0 = 0x7f800000:In
Maximum expressible value Ma FR0 = 0x7f7fffff:Ma
Minimum expressible value Mi FR0 = 0xff7fffff:Mi

When the -h option is specified, rd displays the contents of floating-point registers in
hexadecimal notation.

R0 =0x******** R1 =0x******** R2 =0x******** R3 =0x********

R4 =0x******** R5 =0x******** R6 =0x******** R7 =0x********

R8 =0x******** R9 =0x******** R10 =0x******** R11 =0x********

R12 =0x******** R13 =0x******** R14 =0x******** R15 =0x********

PC =0x******** SP =0x*******

FR0 =**.*******E*** FR1 =**.*******E*** FR2 =**.*******E*** FR3 =**.*******E***

FR4 =**.*******E*** FR5 =**.*******E*** FR6 =**.*******E*** FR7 =**.*******E***

FR8 =**.*******E*** FR9 =**.*******E*** FR10=**.*******E*** FR11=**.*******E***

FR12=**.*******E*** FR13=**.*******E*** FR14=**.*******E*** FR15=**.*******E***

FPUL=0x******** FPSCR=0x********

DSEG0 =0x******** DSEG1 =0x******** DSEG2 =0x******** DSEG3 =0x********

DSEG4 =0x******** DSEG5 =0x******** DSEG6 =0x******** DSEG7 =0x********

FR0 =0x******** FR1 =0x******** FR2 =0x******** FR3 =0x********

FR4 =0x******** FR5 =0x******** FR6 =0x******** FR7 =0x********

FR8 =0x******** FR9 =0x******** FR10=0x******** FR11=0x********

FR12=0x******** FR13=0x******** FR14=0x******** FR15=0x********

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-137

Name
lrr - Changes the registers of the ladder processor.

Syntax
lrr
register : reg
data : datax

Note: The underlined portions are to be entered by the user.

Description

The lrr subcommand rewrites the contents of the registers of breaking ladder programs.
reg: Specifies the name of the target register.

Specify the name shown by the lrd subcommand for the register name.
datax: Specifies the data to be changed. Octal, decimal, or hexadecimal data can be specified.

Specify a real number for floating-point registers.

Result
OK(0): Normal termination.
NG(≠0): Macro error

The macro return code is shown in (≠0).

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-138

Name
lgo - Resumes execution of ladder programs.

Syntax
lgo

Description

The lgo subcommand resumes execution of breaking ladder programs. Breakpoints are not reset
even after execution resumes.

Result
OK(0): Normal termination.
no break: There is no breaking ladder program.

Name
s - Runs steps of ladder programs.

Syntax
s

Description

The s subcommand executes steps of breaking ladder programs. When a ladder program is
terminated by the execution of steps, ladder programs that have been inhibited by breaking
resume execution.

Result

Upon successful completion of step execution, the following message appears:

0xXXXXXXXX: Address of the instruction to be executed next
0xYYYYYYYY: Instruction to be executed next
In the case of abnormal termination, the following message appears:
no break: There is no breaking ladder program.

0xXXXXXXXX 0xYYYYYYYY

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-139

Name
help - Displays a list of subcommands.

Syntax
help

Description

The help subcommand displays a list of svdebug subcommands.
The help subcommands list the subcommand names together with an outline of their functions,
in the following format:

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-140

<Sub Command> <Function>
qu ...task queue
ab ...task abort
re ...task release
ta ...task status
su ...task suspend
rs ...task resume
tm ...task timer request
ct ...task cancel timer
sht ...task show timer
md ...memory print/patch appointed address
sd ...memory print/patch appointed name
mcp ...memory copy
mmv ...memory move
mf ...memory fill
bs ...bit data set
bg ...bit data get
el ...system error display
ss ...system status display
st ...set timer
gt ...get timer
br ...break point set
stickybr ...sticky break point set
rb ...break point reset
rd ...register print
rr ...register set
go ...break point restart
ld ...memory load
sv ...memory save
cm ...memory compare
dr ...DHP regist start
ds ...DHP regist stop
svdhp ...DHP data display
svadm ...address -> sarea name
si ...stack initial
sp ...stack print
ps ...debug message print start
pe ...debug message print end
ver ...CPMS version print
q ...svdebug end
! ...execute external command
help ...command menu display
lbr ...ladder break point set
lrb ...ladder break point reset
lrd ...ladder register print
lrr ...ladder register set
lgo ...ladder break point restart
s ...ladder step execution

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-141

Name
q - Terminates the debugger.

Syntax
q

Description

The q subcommand terminates the debugger.
However, if a breakpoint is set, the subcommand displays it and waits for key input.

Notes

If the message Breakpoint is used appears, reset it by using the go subcommand if
execution is halted at a breakpoint or by using the rb subcommand if execution is not halted at a
breakpoint. Then, reissue the q subcommand.

Name
! - Executes a command on the development machine at the time of svdebug execution.

Syntax
! command-on-development-machine

Description

The ! subcommand runs the character strings after the exclamation point (!) as commands on the
development machine.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-142

Name
svelog - Outputs error log information.

Syntax
svelog [-u site] [-f {s|m|l}] [-logno] [+case] [-d fname] [-o fname]

Error log for one screen is displayed.

{ p }
{ - }
{ ±nl }
{ n }
{ (blank) }
{ q }

Description

The svelog command reads error logs from the error log buffer in the S10VE, and displays the
error logs. The following options can be specified:
-u site: Specify the name of the site to be handled. When this option is omitted, the site set in

the RSSITE environment variable is used.
-f {s|m|l}: Specify one of the following output formats for error log display.

The following formats are available. The default format is m.
s: Error logs are displayed in a simplified format.
m: The complete error log is displayed.
l: Error logs are displayed together with DHP traces.
-logno: The error log that has the error log number specified by logno is displayed.
+case: Specify the number of log cases to be displayed. When this option is omitted, the

complete error log is displayed, starting from the most recent case.
-d fname: Specify the name of the file in which to store the screen operation history (operation

results).
When a file name already in use is specified, the screen operation history is added to
the specified file.

-o fname: Specify the name of the file in which to store the error log.
When a file name already in use is specified, the file is deleted and a new file is
created.

~
~

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-143

Notes on use
 svelog is operable when the CPU is in the RUN or STOP state.
 When the log number specified by -logno is smaller than the log number of the most recent

log, the most recent log is displayed.
 When both -logno and +case are specified, error logs are displayed by the number of cases

specified by +case, starting from the case that has the log number specified by logno.
 The default format is -f m in the S10VE.

Termination codes

The svelog command returns one of the following termination codes:
0: Normal termination
1: Abnormal termination
2: Communication error
3: Suspension by pressing Ctrl+C

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-144

Name
svdhp - Displays DHP traces.

Syntax
svdhp [-u site] [+count] [-on|-off|-stat] [-d fname] [-o fname] [-all [fname] | -f fname] [-freeze]

One screen of DHP trace information is displayed.

{ p }

{ - }

{ ±nl }

{ n }

{ (blank) }

{ q }

Description

The svdhp command displays DHP traces stored in the DHP trace buffer in the S10VE
sequentially from the most recent DHP trace. The following options can be specified:
-u site: Specify the name of the site to be handled. When this option is omitted, the site set in

the RSSITE environment variable is used.
+count: The trace specified by count is displayed.

When this option is omitted, all traces are displayed.
-on: DHP logging is enabled.
-off: DHP logging is disabled.
-stat: Displays the DHP recording mode. If recording is permitted, DHP ON is displayed. If

recording is prohibited, DHP OFF is displayed.
-all [fname]: Simultaneously fetches and displays the DHP log of the CP and HP.

When this option is specified, CP data and HP data are not displayed but are
output to different files. File names (the file name specified by fname_cp.txt
and fname_hp.txt) are output. File names can be omitted. When file names
are omitted, CP-site-name.txt and HP-site-name.txt are used respectively
as file names.
This option cannot be specified together with the -f option or -freeze
option.

-d fname: Specify the name of the file in which to store the screen operation history
(operation results). When a file name already in use is specified, the screen
display is added to the file.

-o fname: Specify the name of the file in which to store the displayed DHP trace
information.
When a file name already in use is specified, the file is deleted and a new file is
created.

-f fname: Specifies the DHP log input file name.
The input file is acceptable only when it stores a DHP log in a GLB with the
dhpread macro and stores the GLB DHP log by using the sv subcommand of
the debugger. This option cannot be specified together with the -all option or
-freeze option.

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-145

-freeze: Collects DHP trace information without occupying CPU time.
Because the recording mode becomes the prohibition mode while DHP trace
information is being collected by this option, DHP trace information that is
being collected is not recorded. After the DHP trace information has been
collected, DHP recording is resumed when the recording mode before
collection was the permission mode. If the recording mode was the prohibition
mode, DHP recording does not start. Use the -stat option to check the DHP
recording mode after the DHP trace information has been collected.
This option cannot be specified together with the -all option or the -f
option.

The following display commands are supported to control DHP trace display.
p, (blank): The next page is displayed.
-: The previous page is displayed.
±nl: DHP trace display starts from the line specified by nl before (when a - is specified) or after

(when a + is specified) the current line.
n: DHP trace display starts from the nth line.
q: DHP trace display is terminated.

svdhp displays traces in the following format:

(1) DHP trace display number
(2) Time of tracing

tt.tttttt

| |

Seconds Output to the nearest microsecond

(3) Trace point type
(4) Trace data (hexadecimal)
(5) Task number
(6) Priority level
(7) Site name or the file name specified by the -f option
(8) Processor type

Notes on use
 The svdhp command works only while the CPU is in the RUN state.
 When -on or -off is specified, DHP traces are not displayed.

Debugging helper trace list [XXXX] Tue Feb 13 15:37:05 2018
 (7)

Processor type = CP
 (8)

 DHP TIME EVENT TN LV DATA1 DATA2 DATA3 DATA4 DATA5

nnnn tt.tttttt ssssssssssss xxx xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
 (1) (2) (3) (5) (6) (4)

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-146

Termination codes
The svdhp command returns one of the following termination codes:
0: Normal termination
1: Abnormal termination
2: Communication error
3: Suspension by pressing Ctrl+C

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-147

Name
svcpunow - Displays the PU load ratio.

Syntax
svcpunow [-u site] [-t seconds]

Description

The svcpunow command fetches the accumulated idle time and the time of the day from the
specified site (PU), and displays the PU load ratio.
Calculation expression

PU load ratio = (measurement time - idle time) / measurement time

The following options can be specified:
-u site: Specify the name of the site to be handled. When this option is omitted, the site set

in the RSSITE environment variable is used.
-t seconds: Specify the length of time in seconds during which the PU load ratio is measured,

within the range of 1 to 3,600. The default is 1.

Notes on use

Even if this command is re-executed when the svcpunow command has already been executed,
no request is accepted.

Termination codes

The svcpunow command returns one of the following termination codes:
0: Normal termination
1: Abnormal termination
2: Communication error
3: Suspension by pressing Ctrl+C

Output format

The results are output as follows:

2018/02/07 17:57:33 SITE=0001cp ** 1 second wait **
CPU(0001cp) load ratio = 0.06%

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-148

Name
svtimex - Displays the task activity ratio.

Syntax
svtimex [-u site] [tname] [-t second]

[tn]

Description

The svtimex command fetches the number of task executions and the accumulated execution
time in the measurement time as well as the time of day.
According to them, timex displays the task activity ratio.
The following options can be specified:

-u site: Specify the name of the site to be handled. When this option is omitted, the site set in

the RSSITE environment variable is used.
tn: Specify the task number from 1 to 300 as a decimal or hexadecimal value. (To specify

a hexadecimal number, prefix it with 0x.)
tname: Specify the task name.

When neither tn nor tname is specified, the user is prompted to enter a measurement
time. Enter a measurement time within the range of 1 to 86,400. The user is then
prompted to enter task names or task numbers. Settings for up to 10 tasks are possible.
To run the svtimex command after entry of a task name or number, press the Enter
key only, without entering task names or task numbers.

-t seconds: Specify the length of time in seconds during which the task activity ratio is
measured, within the range of 1 to 86,400. The default is 1 (second).

Notes on use
 When the -t option is used to specify a measurement time, be sure to specify the task number

(tn) or task name (tname) together.
 Even if the svtimex command is re-run after it has already been executed, no request is

accepted.
 The tn and tname options are mutually exclusive. They cannot be specified together. Up to a

maximum of 10 task names or task numbers can be specified interactively.

Termination codes

The svtimex command returns one of the following termination codes:
0: Normal termination
1: Abnormal termination
2: Communication error
3: Suspension by pressing Ctrl+C

8. svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS

2-149

Output format
The results are output as follows:

2018/02/07 18:02:18 SITE=0001cp ** 1 second wait **

sist(255) load ratio=0.00% execute count=0 total time=0.000sec average time=0.000sec

This Page Intentionally Left Blank

APPENDIXES

APPENDIX A NAMES USABLE IN PROGRAMS

A-2

APPENDIX A NAMES USABLE IN PROGRAMS

Use caution when using a program that includes the same name as a subroutine provided by the
system. All subroutines provided by the system are contained in the library files. These subroutines
can be linked simply by running svload with the -l option specified. When linking a program
that has the same name as a system subroutine, be sure to specify the object file in which the
subroutine is defined as an argument of svload. If you do not do so, the subroutine that has the
same name will be linked from the library file.

The library files provided for each system and the names defined there are described here. when
programming, be careful to avoid duplicating names.
If using the same name is unavoidable, specify the library file after the object file to be linked. A
subroutine that has the same name will not be linked from the library file.
In the lists that follow, the subroutines provided by the system are grouped by library.
Names that begin with an underscore (_) are reserved by the system. Do not use these names.

The following table shows the supported libraries.

Library name Library description Remarks

libsh4nbmzz.lib Subroutines for the C language
Compiler: Version 9
Denormalized numbers: Denormalized numbers
Value rounding: Rounded down

For details, refer to the shc
compiler manual of version 9.

libsh4nbmdn.lib Subroutines for the C language
Compiler: Version 9
Denormalized numbers: 0
Value rounding: Rounded down

libfirad.lib Indirect link address reference subroutines

libcpms.lib CPMS macro linkage subroutines Refer to the relevant
documentation. libsysctl.lib Subroutines for system control

libcycm.lib (*) Cyclic communication subroutines

libnet.lib Socket communication subroutines

libcrs.lib IEEE floating-point processing environment control
subroutines

(*) Provided by an IRSUB in the S10VE.

APPENDIX A NAMES USABLE IN PROGRAMS

A-3

libsh4nbmzz.lib
libsh4nbmdn.lib

 abs acos acosf asin asinf
 atan atan2 atan2f atanf atof
 atoi atol atoll bsearch calloc
 ceil ceilf clearerr cos cosf
 cosh coshf div exp expf
 fabs fabsf fclose feof ferror
 fflush fgetc fgets floor floorf
 fmod fmodf fopen fprintf fputc
 fputs fread free freopen frexp
 frexpf fscanf fseek ftell fwrite
 getc getchar gets isalnum isalpha
 iscntrl isdigit isgraph islower isprint
 ispunct isspace isupper isxdigit labs
 ldexp ldexpf ldiv llabs lldiv
 log log10 log10f logf longjmp
 longjmp_a malloc memchr memcmp memcpy
 memmove memset modf modff perror
 pow powf printf putc putchar
 puts qsort quick_strcmp1 quick_strcpy1 rand
 realloc rewind scanf setbuf setjmp
 setjmp_a setvbuf SFTRL1 sin sinf
 sinh sinhf sml_buf sprintf sqrt
 sqrtf srand sscanf strcat strchr
 strcmp strcpy strcspn strerror strlen
 strncat strncmp strncpy strpbrk strrchr
 strspn strstr strtod strtok strtol
 strtoll strtoul strtoull tan tanf
 tanh tanhf tolower toupper ungetc
 vfprintf vprintf vsprintf

libfirad.lib

 irglbad irsubad

APPENDIX A NAMES USABLE IN PROGRAMS

A-4

libcpms.lib

 abort arsum asusp atmadd atmand
 atmcas atmor atmswap atmtas atmxor
 cfread cfwrite chap chkbmem chktaer
 ctime delay dhpctl dhpread elctl
 exit free geterrno getputype getsysinfo
 gettaskinfo gettimebase gfact gtime gtkmem
 latoma memcpy pfree post prog_call
 prog_exit prog_start prog_switch prsrv queue
 resume_env rleas romread romwrite rs_printf
 rserv rsum save_env sfact stime
 susp timer usrdhp usrel wait
 wrtmem

libsysctl.lib

 cardstat
 cpustpctl dcmcheck dcmctl dcmstat dsuctl
 dsustat ledctl progwdtset sysdo TimebaseToSecs
 wdtset

APPENDIX A NAMES USABLE IN PROGRAMS

A-5

libcycm.lib

 ctlcyc_ghr getcycm_ghr rcycm_ghr restcycm_ghr stcycm_ghr
 wcycm_ghr

libnet.lib

 accept bind connect getsockopt listen
 recv recvfrom send sendto setsockopt
 shutdown socket

libcrs.lib

 fpcheck fpchecko fpgetmask fpgetround fpsetmask
 fpsetround fpsetsticky fpgetsticky

APPENDIX B LIBRARIES

A-6

APPENDIX B LIBRARIES

(1) Conditions for specifying library files

When specifying library files with svload, specify the library names shown in Table A-1.

Table A-1 Conditions for Specifying Library Names

Condition Library name
Specification in

svload
Notes

Programs are coded in C. (The
functions in the relevant library
shown in Appendix A are used.)

libcrs.lib
libnet.lib

-lcrs
-lnet

Created programs use CPMS
macros.

libcpms.lib
libsysctl.lib

-lcpms
-lsysctl

See the S10VE Software Manual
CPMS General Description and
Macro Specifications (manual
number SEE-3-201).

Indirect link addresses or indirect
link subroutines are referenced.

libfirad.lib -lfirad See (3) Subroutines that reference
indirect link addresses.

User-specific libraries are used. user_library -l character-string
or library-name

(2) Library specification order

When specifying libraries in svload, note the following:
• Specify libraries that contain common subroutines as close to the end as possible.
• When the same name appears in more than one specified library, specify the library holding

the object file to be linked first.

APPENDIX B LIBRARIES

A-7

(3) Subroutines that reference indirect link addresses
When using the following module, link with libfirad.lib.

Name
irglbad

Syntax
int *irglbad (no)
int no;

Description

When an indirect link global number (in the range from 1 to the maximum global number) is
specified for no, the irglbad subroutine returns the corresponding global address.

Return codes

When a registered indirect link global number is specified for no, irglbad returns the
corresponding global address.
When an unregistered indirect link global number is specified for no, irglbad returns a value of
0.

Name
irsubad

Syntax
int *irsubad (no)
int no;

Description

When an IRSUB number (in the range from 1 to the maximum global number) is specified for no,
the irsubad subroutine returns the corresponding IRSUB address.

Return codes

When a registered IRSUB number is specified for no, irsubad returns the corresponding
IRSUB address.
When an unregistered IRSUB number is specified for no, irsubad returns a value of 0.

APPENDIX B LIBRARIES

A-8

(4) Message output routine
When using the following module, link with libcpms.lib.

Name
rs_printf

Syntax
int rs_printf (buf, fmt, p1, p2, ..., p10)
char *buff;
char *fmt;
long p1, p2, ..., p10;

Description
rs_printf converts data to a message in a specified format, and then writes the message to the
message buffer area of the OS.
This message can be read by using the ps subcommand of the svdebug command.
Ensure that the character string size of the converted message is in the range from 1 and 1,024
bytes. If the character string size of the converted message is outside the range from 1 to 1,024
bytes, a parameter error occurs, and rs_printf becomes unable to write data.

Parameters

buff: Specifies the start address of a memory area into which the message to be written is to be
temporarily stored.

fmt: Specifies the start address of a memory area that stores a format-indicating character string.
p1 to p10: Used to specify data.

Return codes

When terminated normally, rs_printf returns the character string size (in bytes) of the
converted message.
When terminated abnormally, rs_printf returns one of the following return codes:

0: The message buffer area of the OS was full and could not be written to.
-1: A write operation could not be performed due to a parameter error.
-2: A write operation could not be performed due to a message write error.

Notes

Use this routine for debugging purposes only.

APPENDIX C SITE MANAGEMENT FILES

A-9

APPENDIX C SITE MANAGEMENT FILES

This appendix shows the configuration of the directory that contains the files used for site
management, and also explains each file.

spm*100
27

C:\S10VE\

PCs-number
PCs-number
_unit

CPU-name site-name

a.galmt
6

a.alcmt
7

a.salmt
8

a.submt
9

a.entmt
10

a.pgmmt
11

a.tskmt
12

a.irglbmt
13

a.valmt
14

a.c_galmt
15

a.c_alcmt
16

a.c_salmt
17

a.c_submt
18

a.c_entmt
19

a.c_pgmmt
20

a.c_tskmt
21

a.c_irglbmt
22

RESTBL_data
23

DATA
26

ALLOC
5

PGM
24

SUB
25

**_romimage.abs
29

****.bkf
31

etc
32

conf
33

gen
34

tmp
35

gen
3

1

conf
2

etc

tmp
4

system.e
40

OS
28

BACKUP
30

APPENDIX C SITE MANAGEMENT FILES

A-10

%windir% renix S10VE

usr

etc

RPDP commands

Libraries

****.h

bin
36

rpdp_hce

lib
37

include
38

log rpdp_hce
44

rpctrace
45

48
RPDP_S10VE

sysadm
41

sitemt
42

max_sites
43

rpctrace1
46

rpctrace2
47

etc
39

APPENDIX C SITE MANAGEMENT FILES

A-11

No.
File or directory

name
Name Description Notes

1 etc Storage directory for
the CPU system
generation files

This directory stores the system
generation files of the CPU (for
both CP and HP).

2 conf Storage directory for
the CPU definition
information files

This directory contains the user-
defined files when a CPU (both
CP and HP) system is
generated.

***.u files are defined by users.
***.s files are definition files
for systems.
The svgen command creates a
template file.

3 gen Storage directory for
the CPU actual
reference definition
information output
files

This directory stores the
configuration definition
information files of the CPU
(both CP and HP), which are
output by the svconf
command.

4 tmp Storage directory for
the CPU definition
information output
files

This directory stores the
definition information output
files created based on the
information in conf.

5 ALLOC Storage directory for
the allocator
management table

This directory stores allocator
management tables.

6 a.galmt garea management
file

Manages the names, sizes, and
other attributes of areas within a
logical space.

7 a.alcmt area management file Manages task text and data,
subprogram text and data, and
AREAs (split areas) allocated
within a global (including CM)
area.

Includes entries of the number
defined by MAXAREA in the
system.u file.

8 a.salmt sarea management
file

Manages the SAREAs
(secondary partition areas)
allocated within an AREA (split
area) in a global (including CM)
area.

Includes entries to which the
number of entries defined by
MAXSAREA in the system.u
file are added.

9 a.submt Subprogram
management file

Manages subprograms (IRSUBs
and built-in subroutines).

Includes entries of the number
equivalent to the sum of the
maximum number of built-in
subroutines and the number
defined by ENTMT_MAXENT in
the system.u file.

10 a.entmt IRSUB management
file

Manages indirect link
subprograms (IRSUBs).

Includes entries of the number
defined by ENTMT_MAXENT in
the system.u file.

APPENDIX C SITE MANAGEMENT FILES

A-12

No.
File or directory

name
Name Description Notes

11 a.pgmmt Program
management file

Manages programs registered as
tasks.

Includes entries of the number
defined by PGM_MAXNUM in the
system.u file. 12 a.tskmt Task management

file
Manages tasks.

13 a.irglbmt Indirect global
management file

Manages the registration of
indirect link global data.

Includes entries of the number
defined by IRG_MAXENT in the
system.u file.

14 a.valmt Value management
file

Manages the registration of
values.

Includes entries to which the
number of entries defined by
MVAL_MAXNUM in the
system. u file are added.

15 a.c_galmt S10VE garea
management file

Manages the names, sizes, and
other attributes of areas within a
logical space on the S10VE
side.

Downloaded into the S10VE
with the svrpl command or the
ld subcommand of the
svdebug command.

16 a.c_alcmt S10VE area
management file

Manages task text and data,
subprogram text and data, and
AREAs (split areas) allocated
within a global (including CM)
area on the S10VE side.

17 a.c_salmt S10VE sarea
management file

Manages the SAREAs
(secondary partition areas)
allocated within an AREA (split
area) in a global (including CM)
area on the S10VE side.

18 a.c_submt S10VE subprogram
management file

Manages the subprograms
(IRSUBs and built-in
subroutines) on the S10VE side.

19 a.c_entmt S10VE IRSUB
management file

Manages indirect link
subprograms (IRSUBs) on the
S10VE.

20 a.c_pgmmt S10VE program
management file

Manages programs registered as
S10VE tasks.

21 a.c_tskmt S10VE task
management file

Manages S10VE tasks.

22 a.c_irglbmt S10VE indirect link
global management
file

Manages indirect link global
registration on the S10VE side.

23 RESTBL_data Resource
management table
data file

This table data file manages site
resources.

24 PGM Program storage
directory

This directory stores program
load modules.

Stored when svload is run
with the -d option specified.

APPENDIX C SITE MANAGEMENT FILES

A-13

No.
File or directory

name
Name Description Notes

25 SUB Subprogram storage
directory

This directory stores
subprogram load modules.

26 DATA Storage directory for
global initial-value
data

This directory stores the initial-
value data of a global area.

27 spm*100
(CP side:
spmd100)
(NP side:
spmc100)

SPM file This is a data file for the OS
and drivers in the S10VE main
memory (SPM area).
File names differ for CP and
HP.

This file is loaded into the
S10VE main memory by the
svrpl command.

28 OS OS storage directory This directory stores the OS
base portion of S10VE.

29 **_romimage.a
bs

OS files The OS files of the S10VE,
including I/O and network
driver functions.

This file is loaded into the
S10VE main memory by the
svrpl command.

30 BACKUP Backup file storage
directory

This directory stores backup
files.

Backup files created by svdfa
are stored.

31 ****.bkf Backup files S10VE memory initial-value
files for each split area.

These files are loaded into the
S10VE main memory by the
svrpl command.

32 etc Storage directory for
the system generation
files

This directory stores system
generation files.

33 conf Storage directory for
the site definition
information files

This directory contains files
that are user-defined at the time
of system generation.

***.u files are defined by
users.
***.s files are definition files
for systems.
The svgen command creates a
template file.

34 gen Storage directory for
the configuration
definition files

This directory stores
configuration definition
information files that are output
by the svconf command.

35 tmp Storage directory for
the configuration
definition
information output
files

This directory stores definition
information output files that are
created according to the
information in conf.

36 bin RPDP command
storage directory

This directory stores RPDP
commands.

37 lib S10VE library
storage directory

This directory stores S10VE
libraries.

38 include Include file storage
directory for S10VE

This directory stores S10VE
include files.

APPENDIX C SITE MANAGEMENT FILES

A-14

No.
File or directory

name
Name Description Notes

39 etc Storage directory for
the system
management files

This directory stores system
management files.

40 system.e Site constant
management file

This file stores site constant
information.

41 sysadm System management
files

This file stores site
information.

42 sitemt System management
files

This file stores site
information.

43 max_sites Maximum site count
management file

This file stores information
about the maximum number of
sites.

44 rpdp_hce Log file storage
directory

This directory stores log files.

45 rpctrace Storage directory for
the RPC library log
files

This directory stores log files
for RPC libraries.

46 rpctrace1 RPC library log file Log file for the RPC library When the stored log count
reaches the maximum number,
the log location changes to
rpctrace2.

47 rpctrace2 RPC library log file Log file for the RPC library When the stored log count
reaches the maximum number,
the log location changes to
rpctrace1.

48 RPDP_S10VE RPDP log file Log file for RPDP

APPENDIX D ERROR MESSAGES

A-15

APPENDIX D ERROR MESSAGES

This appendix describes the error messages that are output by commands, as well as the actions to
be taken by the user in response to the error messages.
Values and character strings related to errors are represented in the error messages as %s, %d,
and %x.

No. Item Command
Corresponding

page

(1) Error messages of the allocator, loader, and builder commands svdfa A-16

svdla

svdfs

svdls

svdfv
svdlv

svload

svdload

svcomp

svctask

svdtask

svbuild

svdbuild

svirglb

(2) svdebug error messages svdebug A-24

(3) svrpl command error messages svrpl A-32

(4) svcpuctl command error messages svcpuctl A-34

(5) svelog command error messages svelog A-35

(6) svdhp command error messages svdhp A-36

(7) svcpunow command error messages svcpunow A-39

(8) svtimex command error messages svtimex A-42

(9) svdatagen command error messages svdatagen A-45

APPENDIX D ERROR MESSAGES

A-16

(1) Error messages displayed by the allocator, loader, and builder commands
• Error messages

Table A-2 lists the error messages displayed by the allocator, loader, builder, and map display
commands. When these commands detect an error, they display the relevant error message and
then terminate.

Table A-2 Error Messages

(1/8)

Error
code

Message Explanation User action

Internal errors requiring recovery by the system administrator

1001-1 Abnormal allocator
management table (%s)

An allocator management table contains
an error.

Collect data for
examination, and
then restart the
development
machine. (*1)

Errors related to insufficient resources

1002-4 Not enough physical memory
allocated

The physical memory is insufficient. Delete unnecessary
resources, and then
try again. 6 Not enough area allocated

(%s)
The GLB area is insufficient.

8 No task number available No more task numbers are available.

10 No free table to make new
entry (%s)

No more allocator management tables
are available.

13 Cannot get RSSITE (%s) The RSSITE environment variable
could not be fetched.

Set the environment
variable, and then try
again. 15 Please set environment

variable (%s)
The environment variable was not set.

Errors related to insufficient system resources

1003-1 Memory allocation error
(malloc, %s)

Memory could not be allocated by using
malloc.

Check the amount of
available memory,
and then try again.

3 Cannot create
temporaries: %s

A temporary file could not be created. Check the amount of
available disk space,
and then try again.

Errors unrecoverable by retries

1004-1 Allocator management table
is busy

The allocator management table is being
used by another command.

Re-run the command.

System call errors due to identifiable causes

1005-1 Cannot open %s (%s) The file could not be opened. Review the file
access rights, and
then try again.

2 Cannot read %s (%s) Data could not be read from the file.

3 Cannot write %s (%s) Date could not be written to the file.

4 Cannot stat %s (%s) Status information could not be read
from the file.

Collect data for
examination, and
then restart the
development
machine. (*1)

5 Cannot lseek %s (%s) A file pointer could not be sought.

APPENDIX D ERROR MESSAGES

A-17

(2/8)

Error
code

Message Explanation User action

System call errors due to unidentifiable causes

1006-1 systemcall error (%s,
errno=%d) (*2)

A system call error occurred. Collect data for
examination, and
then restart the
development
machine. (*1)

2 Command name:WIN32API error
(API-name, EC= error code)
(*3)

A function that has API-name caused the
error indicated by the error code.

Parameter insufficiency errors

1007-3 Not enough parameter The arguments are insufficient. Review the
arguments.

Out-of-range input parameters

2001-2 Align number is out of
range

The alignment number is invalid. Verify the data that
can be entered, and
then re-run the
command.

3 Task number is out of range
(1 to %d)

The task number is invalid.

5 Priority level is out of
range (%d to %d)

The user task execution level is invalid.

6 Priority level for system
is out of range (%d to %d)

The system task execution level is
invalid.

9 Bad align type The alignment type is invalid.

10 Illegal point number (%d) The point number for a built-in
subroutine is invalid.

11 Entry number is out of
range (1 to %d)

The entry number for a built-in
subroutine is invalid.

12 Specified index number is
out of range (1 to %d)

The specified index number is invalid.

13 Invalid name (%s) The specified name contains an error.

18 Illegal point name (%s) The point name specified for a built-in
subroutine contains an error.

19 Numeric value is out of
range

The specified numeric value is invalid.

23 Limit size for stack is out
of range (0 to 2097152)

The specified stack size is invalid.

24 User task number is out of
range (1 to 224)

The specified user task number is
invalid.

25 Specified system index
number is out of range (1
to %d)

The specified system index number is
invalid.

26 Specified number with -r is
out of range

The number specified by the -r option
is invalid.

27 Loading data is empty No loading data exists.

28 Number of user task is over
(number-of-tasks)

The number of user tasks registered is
greater than the value of the system
constant.

Delete unnecessary
resources, and then
try again.

33 ULSUB stack size (%d) is
out of range
(0 to 512)

The stack size of a built-in subprogram
is larger than 512 bytes.

Review the stack
size.

35 Program/IRSUB stack size
(%d) is out of range (0 to
8388608)

The stack size of a task is larger than 8
MB.

APPENDIX D ERROR MESSAGES

A-18

(3/8)

Error
code

Message Explanation User action

Undefined input parameters

2002-1 Specified name is undefined
(%s)

An undefined name is specified. Verify the data that
can be entered, and
then re-run the
command.

4 Specified point number in
the entry number is empty

An undefined point number is specified
for a built-in subroutine.

5 Specified IRSUB is not
built (%s)

An IRSUB that has not yet been built is
specified.

7 Specified IRSUB is already
built (%s)

An already-built IRSUB is specified.

8 Specified number is
undefined

An undefined number is specified.

10 %s is undefined An undefined name was detected in an
object.

11 Loading data is empty No data to be loaded exists. Check the object file.

13 Area (%s) kind is wrong The area type is incorrect. Review the specified
area. 14 Can not load data in GLBW,

CMW, and DCMW (%s)
No initial value can be loaded into a
GLB or CM area without an initial
value.

15 Can not load CM, DCM data
from NP or HP site

Loading from the HP site to the CM is
disabled.

Multiply defined input parameters

2003-1 Specified name is already
defined (%s)

A name that has already been registered
is specified.

Verify the data that
can be entered, and
then re-run the
command.

5 Task number is already
defined

A task number that has already been
registered is specified.

7 Point number is already
defined

A point number that has already been
registered is specified for a built-in
subroutine.

8 Specified IRSUB number is
already defined

An IRSUB number that has already been
registered is specified.

Change the IRSUB
number, and then re-
run the command.

13 Unmatched reserved index
number

The specified index number does not
match.

Verify the data that
can be entered, and
then re-run the
command.

15 PN=%s is already defined A duplicate program management
number is specified.

19 Specified number is already
defined

A number that has already been
registered is specified.

21 Can not specify -s or -a
with SAREA (%s)

The -s or -a option specified for a
secondary partition area cannot be
specified.

22 Specified pgmname is
already defined as TASK
(%s)

A task name that has already been
registered is specified as a program
name.

23 PN=%d is already loaded for
single task

A program management number that has
already been registered is specified.

Change the program
management number,
and then re-run the
command.

APPENDIX D ERROR MESSAGES

A-19

(4/8)

Error
code

Message Explanation User action

Non-matching input parameter attributes

2004-1 Unmatched owner type The owner type does not match. Verify the data that
can be entered, and
then re-run the
command.

2 Illegal user type (%s) The user type does not match.

3 Specified area is not
global (%s)

The area type was not GLB.

5 Illegal program type The program type does not match.

8 Unmatched entry number A non-matching entry number is
specified for a built-in subroutine.

10 Area type is not GLBI The area type is not GLB with initial
data.

11 Multi task attribute error The multitask attribute does not match.

16 Unmatched entry type A non-matching entry set number is
specified for a built-in subroutine.

17 Specified name is defined
as GLB, CM or DCM (%s)

A GLB or CM name that has already
been defined is specified.

19 Specified name is defined
as VAL (%s)

A VAL name that has already been
defined is specified.

21 4096 aline error (%s) The specified address is not on a 4096-
byte boundary.

22 Physical address error (%s) An invalid logical address is specified.

23 Area (%s) kind is wrong An invalid area attribute is specified.

24 Loading data is too large
(sname=%s)

The specified data size is greater than
the area size.

25 Inconsistent object was
mixed

Both -lsh4nbmzz and -lsh4nbmdn
are specified for library.

Incorrect operations

2005-1 Cannot delete area which is
already used

The area could not be deleted because
tasks or subprograms are registered.

Execute svdload
before deleting the
area.

2 Cannot delete program which
is registered as task

The program could not be deleted
because it is registered as a task.

Execute svdtask
before deleting the
program.

3 Cannot delete built
subprogram (%s)

The subprogram could not be deleted
because it has already been built.

Execute svdbuild
before deleting a
subprogram that has
already been built.

6 Cannot delete defined %s
(%s)

The area could not be deleted because it
is registered as a GLB or VAL.

Execute svdls or
svdlv before
deleting the area.

7 Specified name (%s) is
referenced by PROG or SUB

The specified resource could not be
deleted because it is being referenced by
a program or subprogram.

Delete the
referencing program
or subprogram before
deleting the specified
resource.

APPENDIX D ERROR MESSAGES

A-20

(5/8)

Error
code

Message Explanation User action

Invalid parameters detected in the svload command

2006-1 Invalid subargument: -W%s An unusable sub-argument is specified. Verify the data that
can be entered, and
then re-run the
command.

5 Too few arguments The number of specified arguments is
insufficient.

8 Missing operand (%s) Some operands are missing.

9 Bad option (%s) An unusable option is specified.

10 Invalid name (%s) A name is specified incorrectly.

Invalid parameters detected in the svload command

2008-1 Error in %s ; Status
termination code

An error occurred in an internal
command (%s).
For the internal command error cause,
see the internal command error message
that was output at the same time. For
error messages of internal commands
(linker), refer to the compiler package
manual (PDF file). (Termination codes
do not have a meaning in this context.)

Check whether the
specified library is
correct, review the
object file and its
source, and then re-
run the command.

2008-2 Fatal error in %s ; Status
termination code

An internal command (%s) caused a
fatal error.
For the internal command error cause,
see the internal command error message
that was output at the same time. For
error messages of internal commands
(linker), refer to the compiler package
manual (PDF file). (Termination codes
do not have a meaning in this context.)

Collect data for
examination, and
then restart the
development
machine. (*4)

Allocator management table errors

200-1 RMphase, (0x%02x) (*) The processing phase is invalid. Restart the
development
machine.

Invalid input data

‒ Argument list too long Too many arguments are specified. Verify the data that
can be entered, and
then re-run the
command.

‒ Argument data too large Too much data is specified in an
argument.

‒ File open error The specified file could not be opened.

‒ Illegal format in file-name,
line-number

Line-number in the specified file is in an
invalid format.

‒ Illegal format of name A name is specified in an invalid format.

‒ Illegal format of numeric
value

Numerical data is specified incorrectly.

‒ Illegal format of task name A task name is specified in an invalid
format.

APPENDIX D ERROR MESSAGES

A-21

(6/8)

Error
code

Message Explanation User action

Invalid input data (continued from the previous page)

‒ Illegal operand An operand is specified incorrectly. Check the data that
can be entered, and
then re-run the
command.

‒ Program text is empty The specified program text size is 0.

‒ %s is different from
subprogram top name

A subprogram name is specified
incorrectly.

‒ %s is referred from system
type

A system task is referencing the user
task.

‒ %s is referred from user
type

A user task is referencing the system
task.

Verify the data that
can be entered, and
then re-run the
command.

‒ Illegal option An invalid option is specified.

‒ Illegal option combination Options were combined incorrectly.

‒ Missing option parameter An option parameter is specified
incorrectly.

‒ Numeric value is out of
range

The specified numeric value is invalid.

‒ Parameter error A parameter is specified incorrectly.

‒ Specified number is
undefined
(specified-name)

The name and -n options are specified
in the svmap command, but the entry
number specified by name is not
defined.

‒ Specified number is illegal
(specified-name)

The name and -n options are specified
in the svmap command, but the entry
number specified by name is invalid.

‒ Specified name is undefined
(specified-name)

The name option is specified in the
svmap command, but the specified
name is undefined.

‒ Task number error A task number is specified incorrectly.

‒ Bad file name The file name, specified as the operation
result output destination in the svadm
command, exceeds 255 characters.

‒ Bad site name The site name specified in the svadm
command exceeds 14 characters.

‒ Parameter is too long Too many arguments are specified.

‒ Illegal parameter The argument parameters contain an
error.

‒ Sitename max length is 14
character (-u)

The site name exceeds 14 characters.

‒ Multi task count is out of
range
(2 to 128)

The number of multitasks contains an
error.

Specify a value in the
range from 2 to 128.

‒ Can not get RSSITE The environment variable could not be
fetched.

Specify the RSSITE
environment variable.

‒ No such site (%s) The specified site was not found. Review the specified
site.

APPENDIX D ERROR MESSAGES

A-22

(7/8)

Error
code

Message Explanation User action

Invalid input data (continued from the previous page)

‒ Some system constants are
not defined

The specified constant was not found in
the system constants.

Review the specified
constant.

‒ -w option argument is not 8
byte align

A value that is not a multiple of 8 is
specified for the stack size.

Review the specified
size.

‒ Total stack size (%d) is
too small

The stack size to be allocated is smaller
than the stack size to be used by the
program.

Review the stack
size.

‒ -C option argument is
not %d byte align

An invalid value is specified by the -C
option.

Specify a multiple of
4096 for programs,
and a multiple of 32
for subprograms.

‒ Bad realtime environment An invalid environment variable
contains an error.

Review the
environment variable.

‒ Program text is empty The text size of the program is 0. Review the specified
object file. ‒ %s is different from

subprogram top name
The subprogram name is incorrect.

‒ .rodata cannot locate GLB
area

The data declared by const cannot be
loaded.

Review the const
declaration of the
initial value data
program.

‒ %s is not defined (Sarea) Initial value data of an undefined GLB
or CM is included in the object file.

Review the initial
value data.

‒ Program has BSS area A multitask or IRSUB has a BSS area. Check the program.

‒ Stack size (%s) = %d (%d)
byte
[MAX refered (%s) size %d
byte] Err

The accumulation stack size exceeded
the specified stack size.

Review the specified
stack size.

‒ Can not get site
information

Site information cannot be fetched. Check the site
definition, and then
try again.

‒ CM area address or size is
different form another CPU

The address or size differs from another
CPU (CP, HP).

Match the CM
address and size.

Execution environment errors

‒ Please set RSSITE The RSSITE environment variable is
not set.

Set the RSSITE
environment variable,
and then re-run the
command.

‒ Unknown RSUTYP An invalid parameter is set in the
RSUTYP environment variable.

Set an s or u in the
RSUTYP
environment variable.

APPENDIX D ERROR MESSAGES

A-23

(8/8)

Error
code

Message Explanation User action

Command errors

‒ cannot perform malloc A work area could not be allocated by
using malloc or realloc.

Re-run the command.

‒ Internal error (timeout
detected)

A communication timeout was detected.

‒ Internal error (no valid
data)

An error was found in the
communication data.

Collect data for
examination, and
then restart the
development
machine. (*1)

‒ cannot open %s The svmap command could not open
the allocator management table file.

‒ Specified site is undefined The specified site could not be found. Review the site
name.

(*1) Data for examination is stored in the following files:
• %windir%\renix\etc\log\rpdp_hce\RPDP_S10VE
• %windir%\renix\etc\log\rpdp_hce\1_ RPDP_S10VE

(*2) The meaning of errno, as indicated in error code
1006-1:

(*3) The meaning of the error codes indicated in error
code 1006-2:

errno Meaning Error code Meaning

2 A file is missing. 2 A file is missing.

3 A path is invalid. 3 A path is invalid.

9 A file is invalid. 4 Too many files are open.

12 The available memory is insufficient. 5 Access rights have not been provided.

13 Access rights have not been provided. 6 The handle is invalid.

24 Too many files are open. 8, 14 The available memory is insufficient.

28 The available disk space is insufficient.
(*4) Meaning of the processing phases:

0x01: The management table in the main memory is being updated.
0x02: The management table file is being updated.
0x03: The hash table is being updated.
0xff: A system status error occurred.

APPENDIX D ERROR MESSAGES

A-24

(2) Error messages displayed by the svdebug command
(1/7)

No. Error message Explanation User action

1 File file-name already exists The specified file already exists. Specify the correct file name.

2 Site site-name not found The specified site could not be
found.

Check the site name.

3 Cannot open file-name The specified file could not be
opened.

Specify the correct file name.

4 No filename given for -i/-
o/-r option

A file name is missing. Specify a file name.

5 No sitename given for -u
option

A site name is missing. Specify a site name.

6 Task No error A task number is specified
incorrectly.

Check the task number.

7 Task name error A task name is specified
incorrectly.

Check the task name.

8 Factor error A start factor is specified
incorrectly.

Check the start factor.

9 Cannot Specify RPC-server
task

An RPC server task cannot be
specified.

Check the task number and
task name.

10 Unknown sub command An uninterpretable subcommand
name is specified.

Check the subcommand name.

11 Name error An uninterpretable name is
specified.

Check the name.

12 Option error An uninterpretable option is
specified.

Check the options.

13 Storage error An uninterpretable storage device is
specified.

Check the storage device.

14 Invalid address set An inaccessible address is
specified.

Check the address.

15 Misformed patch data New data used for modification is
set incorrectly.

Enter a real number in octal,
decimal, or hexadecimal.

16 Unknown RSSITE The RSSITE environment variable
is not yet set.

Set the RSSITE environment
variable.

17 Unknown RSUTYP An attempt was made to access a
system resource in user mode.

Set an s or u in the RSUTYP
environment variable.

APPENDIX D ERROR MESSAGES

A-25

(2/7)

No. Error message Explanation User action

18 Break point already used
by another process

The breakpoint is being used by
another debugger process.

Use the breakpoint after the
other user finishes.

19 Input error The input format is incorrect. Check the input format.

20 Type or length error The md or sd option is specified
incorrectly.

Check the options.

21 RPDP library error
(library-name: error-code)

An error occurred in the RPDP
library.

Collect data for examination,
and then restart the
development machine.
(*1) (*3)

22 Allocator management table
busy

The allocator management table is
busy.

Re-run the command.

23 Unmatch resource status A disagreement exists in the
resource state between the
development machine and S10VE.

Check the specified name.

24 Id NO error The value id is incorrectly
specified for the tm subcommand.

Review the value id.

25 Time error The value t is incorrectly specified
for the tm subcommand.

Review the value t.

26 Cycle time error The value cyct part is incorrectly
specified for the tm subcommand.

Review the value cyct.

27 Initial/check data error An initialization check pattern is
specified incorrectly in the si or
sp subcommand.

Check the specified
initialization check pattern.

28 Addr error An address is specified incorrectly
in the br, rb, or as subcommand.

Check the specified address.

29 Break point is used A breakpoint is being used. Reset the breakpoint, and then
exit the debugger.

30 Bit data error Bit data is specified incorrectly in
the bs or bg subcommand.

Check the specified bit data.

31 Sht sub command is already
executed by another
process

The sht subcommand is being run
by another debugger process.

Use the subcommand after the
other user finishes.

32 Task no error (NO.2100-01) The task number is incorrectly
specified.

Review the task number.

33 Task name error (NO.2100-
02)

The task name is incorrectly
specified.

Review the task name.

APPENDIX D ERROR MESSAGES

A-26

(3/7)

No. Error message Explanation User action

34 Factor error (NO.2100-03) The start factor is incorrectly
specified.

Review the start factor.

35 Cannot Specify RPC-server
task
(NO.2100-04)

No RPC server task can be
specified.

Review the task number and
task name.

36 Specified task is dormant
(NO.2100-05)

The specified task is dormant. Confirm the task status, and
then try again.

37 Specified task is not
dormant
(NO.2100-06)

The specified task is not dormant.

38 Specified task is already
suspend
(NO.2100-07)

The specified task has already been
suspended.

39 Specified task is not
suspend
(NO.2100-08)

The specified task is no longer
suspended.

40 Specified task is not
registered
(NO.2100-09)

The specified task is not registered. Review the task number and
task name.

41 Backup file access error
(NO.2100-10)

The backup file could not be
accessed.

Collect data for examination,
and then restart the
development machine. (*1)

42 Unmatched RSUTYP (NO.2100-
11)

The system resources cannot be
accessed in the user mode.

Gain access in the system
mode.

43 Unmatch resource status
(NO.2100-12)

A resource status mismatch was
found between the development
machine and S10VE.

Review the specified name.

44 Specified task is
undefined
(NO.2100-13)

The specified task name is not
defined.

Review the specified task.

45 CPMS not running (NO.2100-
14)

The CPMS is not running. Ensure that the CPMS is
running.

46 Task is not dormant
(tn=%d)
(NO.2100-15)

The task is not dormant. Render the task dormant, and
then try again.

47 Invalid address error
(NO.2100-16)

An attempt was made to access an
inaccessible address.

Review the address.

48 Invalid address set
(NO.2100-17)

An inaccessible address is
specified.

Review the address.

49 Cannot open file-name
(NO.2100-18)

The file could not be opened. Specify a correct file name.

APPENDIX D ERROR MESSAGES

A-27

(4/7)

No. Error message Explanation User action

50 Processor connection table
is full
(NO.2100-19)

The inter-process connection table
is full.

Wait until another user
finishes, and then try again.

51 Specified task is not idle
(NO.2100-20)

The specified task is not idle. Confirm the task status, and
then try again.

52 Timer event is not
registered
(NO.2100-21)

No timer event is registered. Review the specified task.

53 Time error (NO.2100-22) The value t is incorrectly specified
for the tm subcommand.

Review the value t.

54 Cycle time error (NO.2100-
23)

The value cyct is incorrectly
specified for the tm subcommand.

Review the value cyct.

55 Cannot get system constant
(NO.2100-24)

The system constant could not be
acquired.

Collect data for examination,
and then restart the
development machine. (*1)

56 Ent error (NO.2100-25) The value ent is incorrectly
specified for the ld subcommand.

Review the specified ent
value.

57 Irsub No error (NO.2100-
26)

The indirect link subroutine number
is incorrect.

Review the indirect link
subroutine number.

58 Irglobal No error
(NO.2100-27)

The indirect link global number is
incorrectly specified.

Review the indirect link global
number.

59 Task suspend failed
(NO.2100-28)

The task was not successfully
suspended by the ta subcommand.

Confirm the task status, and
then try again.

60 Point error (NO.2100-29) An incorrect point is specified for
the ld subcommand.

Review the specified point.

61 Cannot get register
information
(NO.2100-30)

The contents of a register could not
be acquired by the ta/rr
subcommand.

Collect data for examination,
and then restart the
development machine. (*1)

62 Specified name (name) is
undefined
(NO.2100-31)

The specified name is not defined. Review the specified name.

63 Cannot register timer
event in TRB
(NO.2100-32)

Timer event registration failed. Collect data for examination,
and then restart the
development machine. (*1)

64 File file-name already exists
(NO.2100-33)

An existing file is specified. Check the specified file name.

65 File file-name create error
(NO.2100-34)

A file could not be created.

66 Cannot save file-name
(NO.2100-35)

A file could not be saved.

APPENDIX D ERROR MESSAGES

A-28

(5/7)

No. Error message Explanation User action

67 File file-name read error
(NO.2100-36)

A file could not be read. Check the specified file name.

68 File file-name format error
(NO.2100-37)

A file is specified in an invalid
format in the ld or cm
subcommand.

69 Pname file-name not found
(NO.2100-38)

The program name was not found. Review the program name.

70 Must specify address in
text space
(NO.2100-39)

Specify an address within a text
space.

Review the specified address.

71 Specified address is
already set
(NO.2100-40)

The specified address was already
set.

72 Must specify break point
address
(NO.2100-41)

Specify a breakpoint address. Review the specified address.

73 Cannot get TCB (NO.2100-
42)

The ta subcommand could not
fetch a TCB.

Collect data for examination,
and then restart the
development machine. (*1)

74 Cannot set break point
beyond the max
(NO.2100-43)

The maximum selectable number of
breakpoints (5) is already specified.

Reset the breakpoints, and
then try again.

75 Cannot use ld sub command
after RSSRCV set (NO.2100-
44)

An attempt was made to use the ld
subcommand after RSSRCV was
set.

Perform batch loading by
using the svrpl command.

76 Inconsistency detected %s
(NO.2100-46)

An inconsistency was found in the
allocator management table.

Collect data for examination,
and then restart the
development machine. (*1)

77 CM is not defined
(NO.2100-48)

The CM area is not defined. Review the specified options.

78 DCM is not defined
(NO.2100-49)

The DCM area is not defined.

79 Specified area is not
defined for glb
(NO.2100-50)

The specified split area is not a
global area.

Review the specified split area
name.

80 Cannot specify another CM
space
(NO.2100-51)

No other CM space can be
specified.

Review the specified
parameters.

81 Specified pgm number is
out of range
(1 to 255) (NO.2100-52)

The specified program number is
out of range.

82 Cannot load CM/DCM when PU
is running (NO.2100-53)

Loading to the CM is disabled
when S10VE is in the RUN state.

Check the S10VE status, and
then try again.

APPENDIX D ERROR MESSAGES

A-29

(6/7)

No. Error message Explanation User action

83 ADT channel is already set
(NO.2100-56)

The ADT is already set. Reset the ADT, and then run
the command.

84 Illegal break point
address
(laddr= logical address)
(NO.2100-58)

The logical address set for a
breakpoint is not registered as a
program address.

Restart the CPU, and then
reset the breakpoint setting.

85 Specified raddr is not
break point address
(raddr= relative address)
(NO.2100-59)

No breakpoint is set at the specified
relative address (raddr).

Review the specified address.

86 Break task is not found
(NO.2100-60)

No task was found to be halted at a
breakpoint.

Confirm the breakpoint setup.

87 Specified name (program-
name) is used break point
(NO.2100-61)

A breakpoint is set for the program
name that is specified by the ld
subcommand.

Reset the breakpoint, and then
try again.

88 Specified area is not
initialize data area
(NO.2100-62)

The specified address points to an
area that contains no backup file.

Review the specified address.

89 Specified address is not
initialize data area
(NO.2100-63)

No backup file was found in the
specified area.

Review the specified area.

90 Specified name (%s) is not
GLB/CM/DCM area (NO.2100-
66)

The specified name does not
represent a GLB or CM area.

Specify a GLB or CM area.

91 Cannot access CM/DCM
backupfile from NP or HP
site (NO.2100-67)

The CM backup file cannot be
accessed from the HP site.

Access the CM backup file
from the CP site.

92 Specified sub command can
use in HP site only
(NO.2100-73)

The specified subcommand cannot
be used in a site other than the HP
site.

Specify the HP site.

93 Communication error (catch
signal) (NO.2101-01)

A signal was received. Check the network connection
status, S10VE, and the IP
address of the development
machine, and then try again.

94 Communication error
(connection timeout)
(NO.2101-02)

A timeout was generated.

95 Communication error
(connection refused)
(NO.2101-03)

No RPC server exists.

96 Communication error
(connection cut) (NO.2101-
04)

The RPC server is disconnected.

97 Communication error
(connection reset)
(NO.2101-05)

A connection was reset.

APPENDIX D ERROR MESSAGES

A-30

(7/7)

No. Error message Explanation User action

98 Communication error
(server closed) (NO.2101-
06)

The RPC server is closed. Check the network connection
status, S10VE, and the IP
address of the development
machine, and then try again.

99 Communication error (port
busy) (NO.2101-07)

The line port is busy. Wait until another user
terminates communication,
and then re-run the command.

100 Communication error (bad
socket specified)
(NO.2101-08)

The specified socket is invalid. Check the network connection
status, S10VE, and the IP
address of the development
machine, and then try again. 101 Communication error

(socket creat error)
(NO.2101-09)

A socket could not be created.

102 Communication error (no
buffer) (NO.2101-10)

Memory could not be allocated.

103 Communication error
(network not reached)
(NO.2101-11)

The network is not connected.

104 Communication error
(network down) (NO.2101-
12)

The interface connected to the
network is down.

105 Communication error (port
No error) (NO.2101-13)

A port number could not be
fetched.

106 Communication error (IP
address error) (NO.2101-
14)

An IP address could not be fetched.

107 Communication error
(memory attach failed)
(NO.2101-15)

Shared memory could not be
attached.

108 Communication error (trace
file cannot open)
(NO.2101-16)

A trace file could not be opened.

109 Communication error (trace
file cannot copy)
(NO.2101-17)

A trace file could not be copied.

110 Communication error (fatal
error) (NO.2101-18)

A fatal error was detected.

111 Communication error
(library-name: error-number)
(NO.2101-19) (*2)

An error occurred in an RPL or
RRB library.

112 Communication error (inter
PU communication time out)
(NO.2101-20)

A timeout occurred during inter-PU
communication.

113 Communication error
(rc=%d) (NO.2101-21)

An RPC library error occurred. Check the versions of the
CPMS and RPDP. (*4)

APPENDIX D ERROR MESSAGES

A-31

(*1) Data for examination is stored in the following files:
• %windir%\renix\etc\log\rpdp_hce\RPDP_S10VE
• %windir%\renix\etc\log\rpdp_hce\1_RPDP_S10VE

(*2) In the event of a communication error, see the following:
Meanings of communication error codes:
0x11: The socket is invalid.
0x12: The IP address is invalid.
0x14: The storage area address is invalid

(0 specified, dta).
0x15: The storage area address is invalid

(0 specified, wka).
0x16: The size is invalid (smaller than

0 KB or larger than 16 KB).
0x17: The size is invalid

(non-longword size).
0x03: The remote adapter type is invalid.

0x04: The frame creation memory could not be allocated.
0x05: Data transmission failed.
0x06: An error occurred during a wait for response

reception.
0x07: The maximum retry count was exceeded, because the

response was not received.
0x08: Data reception failed.
0x18: The storage area address is invalid

(0 specified, dmaia).
0x19: The storage area address is invalid

(0 specified, reta).
0x8000000X: Error report with a response (status code in the CPU control header)

X: Status code, 4: μΣ1000 network not set
0xFFFFFFFF: The environment file settings contain an error.

(*3) Meaning of RPDP library error codes:
-1: The system file could not be opened.
-2: The system file could not be loaded.
-3: The site directory path is too long.
-4: The system route could not be fetched.

(*4) Meaning of rc in RPC library errors:
22: An illegal request was generated.
23: No function corresponding to the CPMS exists.

APPENDIX D ERROR MESSAGES

A-32

(3) List of svrpl command error messages
(1/2)

No. Error message Explanation User action

1 No sitename given for -u
option

The site name is not specified. Specify the site name.

2 No unitname given for -U
option

The unit name is not specified. Specify the unit name.

3 unknown RSSITE The specified site name was not
found.

Confirm the specified site.

4 Site=%s not found

5 Unit=%s not found The specified unit name was not
found.

Confirm the specified unit.

6 %s cannot open The file could not be opened. Check whether the file is
normal. 7 %s file access error The file could not be accessed.

8 Internal error (%s) An internal error occurred. Try again.

9 download file (%s) not
found

The backup file to be downloaded
was not found.

Confirm the environment.

10 site (%s) lock busy The site is being used by another
process.

Try again.

11 site (%s) lock error

12 communication error
(%s, RC=0x%x, error
address)

A communication error occurred. Identify the cause of the error
in accordance with the RC
(*1).
An ST# setting is incorrect
(%s:rrw_rpl_p) or an Ethernet
cable is not connected.
Check and correct the settings.

13 communication error
(%s,RC=0x%x)

14 site (%s) allocator
management tables
modify error

An error occurred during an
allocator management table update.

Use the svmkrestbl
command to repair the
allocator management table.

15 IP ADDRESS SET ERROR
(RC=0x%x)

An error occurred during IP address
setup.

Identify the cause of the error
in accordance with the RC
(*1).
After a change in the
connected PCs, an IP address
setting is incorrect or an
Ethernet cable is not
connected.
Check and correct the settings.

16 %s (slot=%d) NON EXIST The slot was not found. Confirm the system generation
information.

17 File mapping error (%s) The RPDP resource table could not
be set up.

Try again.

18 site (%s) unlock error An error occurred when an attempt
was made to unlock the site.

APPENDIX D ERROR MESSAGES

A-33

(2/2)

No. Error message Explanation User action

19 Can not specified NP or HP
site(%s)

The specified site was an HP site. Specify a CP site.

20 Usage:svrpl [{-u site|-U
unit} {-s}]
[-all] [-r]
[{-time|-notime}][-ROMSV |
-NOROMSV] [-setpcsno]

‒ ‒

21 Can not get site
information

Site information could not be
acquired.

Check the status of the
specified site. (*2)

22 Can not load data until
finish initializing
module-hardware

Data cannot be downloaded due to
initialization of the module
hardware.

After the hardware has been
initialized, try again. (The
STBY LED on the module
blinks during hardware
initialization. When hardware
initialization is complete, the
STBY LED turns on.)

23 Command I/F (command
code=0x%x) time out

A command interface timeout error
occurred. (*3)

Check the network connection
status, and then try again.

24 Not RPDPusers This user does not have the
RPDPusers authority.

Execute the command with a
user who has the RPDPusers
authority.

25 -NOROMSV cannot be
specified with -setpcsno

-NOROMSV and -setpcsno
cannot be specified together.

Review the specified options.

26 CPMS has not been
downloaded. CPMS must be
downloaded from BASE
SYSTEM in advance.

The CPMS has not been
downloaded.

Download the CPMS from
BASE SYSTEM/S10VE.

(*1) In the event of a communication error, see the following:
Meanings of communication RCs:
0x11: The socket is invalid.
0x12: The IP address is invalid.
0x14: The storage area address is invalid

(0 specified, dta).
0x15: The storage area address is invalid

(0 specified, wka).
0x16: The size is invalid (smaller than

0 KB or larger than 16 KB).
0x17: The size is invalid

(non-longword size).
0x03: The remote adapter type is invalid.

0x04: The frame creation memory could not be allocated.
0x05: Data transmission failed.
0x06: An error occurred during a wait for response

reception.
0x07: The maximum retry count was exceeded because the

response was not received.
0x08: Data reception failed.
0x18: The storage area address is invalid

(0 specified, dmaia).
0x19: The storage area address is invalid

(0 specified, reta).
0x8000000X: Error report with a response (status code in the CPU control header)

X: Status code, 4: μΣ1000 network not set
0xFFFFFFFF: The environment file settings contain an error.

(*2) Confirm the No. 41 file on page A-9.
(*3) The following shows the meaning of command codes that are shown in the event of a command interface timeout

error:
0x01C00000: Physical address access
0x11C00000: Time setting
0x21C00000: Batch ROM saving

APPENDIX D ERROR MESSAGES

A-34

(4) List of svcpuctl command error messages

No. Error message Explanation User action

1 No sitename given for -u
option

The unit name is not specified. Specify the unit name.

2 unknown RSSITE The specified site name was not
found.

Confirm the specified site.

3 Site=%s not found

4 Internal error (%s) An internal error occurred. Try again.

5 site (%s) lock busy The site is being used by another
process. 6 site (%s) lock error

7 communication error
(%s, RC=0x%x, error-address)

A communication error occurred. Identify the cause of the error
in accordance with the RC. (*)
An ST# setting is incorrect
(%s:rrw_rpl_p) or an Ethernet
cable is not connected
(%s:set_ip).
Check and correct the settings.

8 communication error (%s,
RC=0x%x)

9 %s (slot=%d) NON EXIST The slot was not found. Confirm the system generation
information.

10 site (%s) unlock error An error occurred when an attempt
was made to unlock the site.

Try again.

11 Site=%s is NP or HP site The HP site is specified. Specify the CP site.

12 Command I/F (command
code=0x11C00000) time out

A timeout error occurred in the
command interface time setting.

Check the network connection
status, and then try again.

13 Not RPDPusers This user does not have the
RPDPusers authority.

Execute the command with a
user who has the RPDPusers
authority.

14 Usage: svcpuctl [{-u site}
{-s {-stop|-run}}] [-time]
Usage: svcpuctl [-u site]
-ss

‒ ‒

(*) In the event of a communication error, see the following:
Meanings of communication RCs:
0x11: The socket is invalid.
0x12: The IP address is invalid.
0x14: The storage area address is invalid

(0 specified, dta).
0x15: The storage area address is invalid

(0 specified, wka).
0x16: The size is invalid (smaller than

0 KB or larger than 16 KB).
0x17: The size is invalid

(non-longword size).
0x03: The remote adapter type is invalid.

0x04: The frame creation memory could not be allocated.
0x05: Data transmission failed.
0x06: An error occurred during a wait for response

reception.
0x07: The maximum retry count was exceeded because the

response was not received.
0x08: Data reception failed.
0x18: The storage area address is invalid

(0 specified, dmaia).
0x19: The storage area address is invalid

(0 specified, reta).
0x8000000X: Error report with a response (status code in the CPU control header)

X: Status code, 4: μΣ1000 network not set
0xFFFFFFFF: The environment file settings contain an error.

APPENDIX D ERROR MESSAGES

A-35

(5) Error messages displayed by the svelog command

No. Error message Explanation User action

1 Usage: svelog [-u site] [-f
{s|m|l}] [-logno] [+case] [-d
fname] [-o fname]

An option is specified incorrectly. Specify the options
correctly.

2 Unknown RSSITE The RSSITE environment variable
is not set.

Set the RSSITE
environment variable.

3 logno error. logno is 1-999 The specified log number is invalid. Check the log number.

4 unknown site (site-name) The specified site could not be
found.

Check the site name.

5 communication error (error-code) Transmission or reception failed
between the development machine
and S10VE.

Check the cause based
on the error code. (*2)

6 memory allocate error Memory could not be allocated. Try again.

7 logno log-number: not found The error log that has the specified
log number could not be found.

Check the log number.

8 no error log. No error log exists. No error has occurred.

9 cannot open file-name A file could not be opened. Collect data for
examination, and then
restart the development
machine. (*1)

10 cannot read file-name An error was detected while a file
was being read.

11 specified logno is not found The error log that has the specified
log number could not be found.

Check the log number.

12 eloghr : Invalid file name
(XXXX)

File name XXXX is invalid. Specify the correct file
name, and then re-run
the command.

(*1) Data for examination is stored in the following files:
• %windir%\renix\etc\log\rpdp_hce\RPDP_S10VE
• %windir%\renix\etc\log\rpdp_hce\1_RPDP_S10VE

(*2) In the event of a communication error, see the following:
Meanings of communication error codes:
0x11: The socket is invalid.
0x12: The IP address is invalid.
0x14: The storage area address is invalid

(0 specified, dta).
0x15: The storage area address is invalid

(0 specified, wka).
0x16: The size is invalid (smaller than

0 KB or larger than 16 KB).
0x17: The size is invalid

(non-longword size).
0x03: The remote adapter type is invalid.

0x04: The frame creation memory could not be allocated.
0x05: Data transmission failed.
0x06: An error occurred during a wait for response

reception.
0x07: The maximum retry count was exceeded because the

response was not received.
0x08: Data reception failed.
0x18: The storage area address is invalid

(0 specified, dmaia).
0x19: The storage area address is invalid

(0 specified, reta).
0x8000000X: Error report with a response (status code in the CPU control header)

X: Status code, 4: μΣ1000 network not set
0xFFFFFFFF: The environment file settings contain an error.

APPENDIX D ERROR MESSAGES

A-36

(6) Error messages displayed by the svdhp command
(1/3)

No. Error message Explanation User action

1 usage: svdhp [-u site] [+count]
[-on|-off|-stat]
[-d fname] [-o fname] [-all
[fname]|-f fname]
[-freeze]

An option is specified incorrectly. Specify the options
correctly.

2 Unknown RSSITE The RSSITE environment variable
is not set.

Set the RSSITE
environment variable.

3 No such site (site-name) The specified site was not found. Review the site name.

4 No such PUname (CPU-name) The specified CPU was not found. Review the CPU name.

5 specified CPU (CPU-name) is CP
only

Only CP is specified as a CPU.

6 Some system constants are not
defined

An undefined system constant
exists.

Review the system
constant definitions.

7 Bad realtime environment The system environment contains
an error.

Collect data for
examination, and then
restart the development
machine. (*)

8 memory allocate error Memory could not be allocated. The error might have
occurred because the
available memory was
temporarily insufficient.
Verify that the available
memory is sufficient,
and then re-run the
command.

9 cannot open file-name A file could not be opened. Confirm the security
and other conditions of
files and directories.

10 cannot read file-name An error was detected while a file
was being read.

11 cannot write file-name An error was detected while a file
was being written.

12 No such AREA (DHP_RD) in salmt The DHP read area (DHP_RD)
could not be found in the global
area.

Collect data for
examination, and then
restart the development
machine. (*) 13 Memory access error The S10VE memory could not be

accessed.

APPENDIX D ERROR MESSAGES

A-37

(2/3)

No. Error message Explanation User action

14 Memory allocation error
(malloc, dhp read area)

A DHP read area could not be
allocated.

The error might have
occurred because the
available memory was
temporarily insufficient.
Verify that the available
memory is sufficient,
and then re-run the
command.

15 Communication error (catch
signal)

A signal was received. Check the network
connection status,
S10VE, and the IP
address of the
development machine,
and then try again.

16 Communication error (connection
timeout)

A connection timeout was
generated.

17 Communication error (connection
refused)

No RPC server exists.

18 Communication error (connection
cut)

A connection was discontinued.

19 Communication error (connection
reset)

A connection was reset.

20 Communication error (server
closed)

The RPC server is closed. Collect data for
examination, and then
restart the development
machine. (*)

21 Communication error (port busy) The line port is busy. Wait until another user
terminates
communication, and
then re-run the
command.

22 Communication error (socket
create error)

A socket could not be created. Check the network
connection status,
S10VE, and the IP
address of the
development machine,
and then try again.

23 Communication error (no buffer) Memory could not be allocated.

24 Communication error (network
not reached)

The network is not connected.

25 Communication error (network
down)

The interface connected to the
network is down.

26 Communication error (port No
error)

A port number could not be
fetched.

27 Communication error (IP address
error)

An IP address could not be fetched.

28 Communication error (memory
attach failed)

Shared memory could not be
attached.

29 Communication error (trace file
cannot open)

A trace file could not be opened.

30 Communication error (trace file
cannot copy)

A trace file could not be copied.

APPENDIX D ERROR MESSAGES

A-38

(3/3)

No. Error message Explanation User action

31 Communication error (fatal
error)

A fatal error was detected. Check the network
connection status,
S10VE, and the IP
address of the
development machine,
and then try again.

32 dhp data read error An error was detected when an
attempt was made to read dhp trace
data.

Collect data for
examination, and then
restart the development
machine. (*) 33 Cannot dhp trace ON/OFF An error was detected when an

attempt was made to exercise dhp
trace control.

34 svdhp : Invalid file name
(XXXX)

File name XXXX is invalid. Specify the correct file
name, and then re-run
the command.

35 svdhp : DHP data illegal The file data is abnormal. Specify the correct file.

36 Not RPDPusers This user does not have the
RPDPusers authority.

Execute the command
with a user who has the
RPDPusers authority.

(*) Data for examination is stored in the following files:
• %windir%\renix\etc\log\rpdp_hce\RPDP_S10VE
• %windir%\renix\etc\log\rpdp_hce\1_RPDP_S10VE

APPENDIX D ERROR MESSAGES

A-39

(7) Error messages displayed by the svcpunow command
(1/3)

No. Error message Explanation User action

1 Usage: svcpunow [-u site] [-t
second]

An option is specified incorrectly. Specify the options
correctly.

2 Unknown RSSITE The RSSITE environment variable
is not set.

Set the RSSITE
environment variable,
and then try again.

3 memory allocation error
(malloc, puloadinfo area)

An area from which to read PU
load ratio information could not be
allocated.

The error might have
occurred because the
available memory was
temporarily insufficient.
Verify that the available
memory is sufficient,
and then re-run the
command.

4 cannot get PU load information A PU load ratio could not be
fetched.

Collect data for
examination, and then
restart the development
machine. (*1)

5 Not available parameter An unusable parameter was
detected.

6 No such AREA (puloadinfo) in
salmt

An area from which to read PU
load ratio information could not be
searched.

7 Communication error (catch
signal)

A signal was received. Check the network
connection status,
S10VE, and the IP
address of the
development machine,
and then try again.

8 Communication error (connection
timeout)

A timeout was generated.

9 Communication error (connection
refused)

No RPC server exists.

10 Communication error (connection
cut)

The RPC server was disconnected.

11 Communication error (connection
reset)

A connection was reset.

12 Communication error (server
closed)

The RPC server was closed.

13 Communication error (port busy) The line port is busy. Wait until other
communication finishes,
and then try again.

14 Communication error (bad socket
specified)

A socket descriptor is specified
incorrectly.

Check the network
connection status,
S10VE, and the IP
address of the
development machine,
and then try again.

15 Communication error (socket
create error)

A socket could not be created.

APPENDIX D ERROR MESSAGES

A-40

(2/3)

No. Error message Explanation User action

16 Communication error (no buffer) Memory could not be allocated. The error might have
occurred because the
available memory was
temporarily insufficient.
Verify that the available
memory is sufficient,
and then re-run the
command.

17 Communication error (network
not reached)

The network is not connected. Collect data for
examination, and then
restart the development
machine. (*1) (*2)

18 Communication error (network
down)

The interface connected to the
network is down.

Check the network
connection status,
S10VE, and the IP
address of the
development machine,
and then try again.

19 Communication error (port No
error)

A port number could not be
fetched.

20 Communication error (IP address
error)

An IP address could not be fetched.

21 Communication error (memory
attach failed)

Shared memory could not be
attached.

22 Communication error (trace file
cannot open)

A trace file could not be opened.

23 Communication error (trace file
cannot copy)

A trace file could not be copied.

24 Communication error (fatal
error)

A fatal error was detected.

25 Communication error
(cannot connection errno = %x)

(*2)

A communication line could not be
established.

26 Communication error (RRB errno
= %x) (*2)

Memory could not be read.

27 Memory access error Memory in the S10VE could not be
read or written.

Collect data for
examination, and then
restart the development
machine. (*1)

28 target status error An S10VE command support task
could not be started.

29 Cannot get TCB TCB information could not be read.

30 command is already execution The command could not be run
because another user was
measuring a PU load ratio.

Re-run the command.

APPENDIX D ERROR MESSAGES

A-41

(3/3)

No. Error message Explanation User action

31 No sitename given for -u option A site name is missing. Verify the data that can
be entered, and then re-
run the command.

32 Site=%s not found No such site could be found.

33 PU load measuring period error
[second = 1-3600]

A measurement time is specified
incorrectly.

34 Not RPDPusers This user does not have the
RPDPusers authority.

Execute the command
with a user who has the
RPDPusers authority.

(*1) Data for examination is stored in the following files:
• %windir%\renix\etc\log\rpdp_hce\RPDP_S10VE
• %windir%\renix\etc\log\rpdp_hce\1_RPDP_S10VE

(*2) In the event of a communication error, see the following:
0x11: The socket is invalid.
0x12: The IP address is invalid.
0x14: The storage area address is invalid

(0 specified, dta).
0x15: The storage area address is invalid

(0 specified, wka).
0x16: The size is invalid (smaller than

0 KB or larger than 16 KB).
0x17: The size is invalid

(non-longword size).
0x03: The remote adapter type is invalid.

0x04: The frame creation memory could not be allocated.
0x05: Data transmission failed.
0x06: An error occurred during a wait for response

reception.
0x07: The maximum retry count was exceeded because the

response was not received.
0x08: Data reception failed.
0x18: The storage area address is invalid

(0 specified, dmaia).
0x19: The storage area address is invalid

(0 specified, reta).
0x8000000X: Error report with a response (status code in the CPU control header)

X: Status code, 4: μΣ1000 network not set
0xFFFFFFFF: The environment file settings contain an error.

APPENDIX D ERROR MESSAGES

A-42

(8) Error messages displayed by the svtimex command
(1/3)

No. Error message Explanation User action

1 Usage: svtimex [-u site]
[tname] [-t second] [tn]

An option is specified incorrectly. Specify the options
correctly.

2 Unknown RSSITE The RSSITE environment variable
is not set.

Set the RSSITE
environment variable,
and then try again.

3 memory allocation error
(malloc, taskloadinfo area)

An area from which to read PU
load ratio information could not be
allocated.

The error might have
occurred because the
available memory was
temporarily insufficient.
Verify that the available
memory is sufficient,
and then re-run the
command.

4 cannot get task load
information

A task load ratio could not be
fetched.

Collect data for
examination, and then
restart the development
machine. (*1)

5 cannot get task load
information
Taskname=%s (%s)

A task load ratio could not be
fetched. (The task is identifiable.)

6 Not available parameter An unusable parameter was
detected.

7 No such AREA (puloadinfo) in
salmt

An area from which to read task
load ratios could not be allocated.

8 Communication error (catch
signal)

A signal was received. Check the network
connection status,
S10VE, and the IP
address of the
development machine,
and then try again.

9 Communication error (connection
timeout)

A timeout was generated.

10 Communication error (connection
refused)

No RPC server exists.

11 Communication error (connection
cut)

The RPC server was disconnected.

12 Communication error (connection
reset)

A connection was reset.

13 Communication error (server
closed)

The RPC server is closed.

14 Communication error (port busy) The line port is busy. Wait until other
communication finishes,
and then try again.

APPENDIX D ERROR MESSAGES

A-43

(2/3)

No. Error message Explanation User action

15 Communication error (bad socket
specified)

A socket descriptor is specified
incorrectly.

Check the network
connection status,
S10VE, and the IP
address of the
development machine,
and then try again.

16 Communication error (socket
create error)

A socket could not be created.

17 Communication error (no buffer) Memory could not be allocated. The error might have
occurred because the
available memory was
temporarily insufficient.
Verify that the available
memory is sufficient,
and then re-run the
command.

18 Communication error (network
not reached)

The network is not connected. Check the network
connection status,
S10VE, and the IP
address of the
development machine,
and then try again.

19 Communication error (network
down)

The interface connected to the
network is down.

20 Communication error (port No
error)

A port number could not be
fetched.

21 Communication error (IP address
error)

An IP address could not be fetched.

22 Communication error (memory
attach failed)

Shared memory could not be
attached.

Check the network
connection status,
S10VE, and the IP
address of the
development machine,
and then try again.

23 Communication error (trace file
cannot open)

A trace file could not be opened.

24 Communication error (trace file
cannot copy)

A trace file could not be copied.

25 Communication error (fatal
error)

A fatal error was detected.

26 Communication error (cannot
connection errno = %x) (*2)

A communication line could not be
established.

27 Communication error (RRB errno
= %x) (*2)

Memory could not be read.

28 Memory access error Failed to read and write memory
data.

Collect data for
examination, and then
restart the development
machine. (*1)

29 target status error A command support task could not
be started.

30 Cannot get TCB TCB information could not be read.

APPENDIX D ERROR MESSAGES

A-44

(3/3)

No. Error message Explanation User action

31 command is already execution The command could not be run
because another user was
measuring task load ratios.

Re-run the command.

32 No sitename given for -u option A site name is missing. Verify the data that can
be entered, and then re-
run the command.

33 Site=%s not found The specified site could not be
found.

34 Task measuring period error
[second = 1-86400]

A measurement time is specified
incorrectly.

35 taskname or number set data
over (max=10)!!

More than 10 task names or task
numbers are specified.

36 taskname or number error (%s) A task name or task number is
specified incorrectly.

37 %s (%s) task non exist or
unmatch

The specified task was not
registered in both the development
machine and S10VE.

Register the task in both
the development
machine and S10VE.

38 Not RPDPusers This user does not have the
RPDPusers authority.

Execute the command
with a user who has the
RPDPusers authority.

(*1) Data for examination is stored in the following files:
• %windir%\renix\etc\log\rpdp_hce\RPDP_S10VE
• %windir%\renix\etc\log\rpdp_hce\1_RPDP_S10VE

(*2) In the event of a communication error, see the following:
0x11: The socket is invalid.
0x12: The IP address is invalid.
0x14: The storage area address is invalid

(0 specified, dta).
0x15: The storage area address is invalid

(0 specified, wka).
0x16: The size is invalid (smaller than

0 KB or larger than 16 KB).
0x17: The size is invalid

(non-longword size).
0x03: The remote adapter type is invalid.

0x04: The frame creation memory could not be allocated.
0x05: Data transmission failed.
0x06: An error occurred during a wait for response

reception.
0x07: The maximum retry count was exceeded because the

response was not received.
0x08: Data reception failed.
0x18: The storage area address is invalid

(0 specified, dmaia).
0x19: The storage area address is invalid

(0 specified, reta).
0x8000000X: Error report with a response (status code in the CPU control header)

X: Status code, 4: μΣ1000 network not set
0xFFFFFFFF: The environment file settings contain an error.

APPENDIX D ERROR MESSAGES

A-45

(9) svdatagen command error messages
(1/2)

No. Error message Explanation User action Restrictions

‒ Usage: svdatagen
[-u site] file

An error was found in the
command startup format.

Review the format of the
specified options.

‒ Cannot open input
file (%s)

The input file cannot be
opened.

Review the specified file path
and access rights.

‒ Cannot open
include file (%s)

The include file cannot be
opened.

Review the specified include
file.

Preprocessor

‒ sitename is too
long

A site name of more than 14
characters is specified.

Review the specified site
name.

‒ No such site (%s) The specified site does not
exist.

‒ No type nor
storage class

The declaration statement does
not include a type specifier or
storage class specifier.

Review the declaration
statement.

Restriction (14)

‒ Illegal token
(%s)

A syntax error was found or an
unsupported syntax is being
used.

Review the input file data. Restrictions (7),
(9), (10), (11),
(12), (13), (15),
(16), and (17)

‒ Multiple storage
classes

An error was found in the
specified storage class
specifier.

Review the storage class
specifier.

Restriction (3)

‒ Unexpected token
appeared (%s)

An unsupported syntax was
detected.

Review the input file data. Restrictions (2),
(3), (4), (5), (6),
and (10)

‒ Illegal array
size (%s)

The array element count
cannot be omitted.

Review the array. Restriction (8)

‒ Invalid
initializer (%s)

A non-convertible initial value
appeared in the variable type.

Review the initial value. Initial value

‒ Illegal type
combination

An incorrect combination of
type specifiers was made.

Review the type specifier. Restriction (4)

‒ #define expected.
(%s)

A specification other than
#define appeared in the
include file.

Review the include file data. Preprocessor

‒ Invalid define
value (%s)

The specification of the define
value is incorrect.

Review #define. Check
whether a signed octal or
hexadecimal number is
included.

Preprocessor

‒ EOF encountered
in a comment

The end of the comment was
not found.

Review the comment. Restriction (18)

‒ Too few
initializer (%s)

Initial values of array and
structure are not enclosed by
curly brackets ({ }).

Review the initial values of the
array and structure.

Restriction (17)

‒ Too many
initializer (%s)

Too many initial values exist. Review the initial values.

‒ Incomplete tag
used in
declaration (%s)

An undefined structure tag is
being used.

Review the declaration of the
structure.

Restriction (4)

The Restrictions column shows the correspondence with 4.4 Data Generator in PART 1.
For details, see the applicable restrictions.
Restriction: (b) Differences from C language declaration statements and restrictions
Preprocessor: (e) Restrictions on preprocessor functions
Initial value: (f) Specifications of initial value type conversion

APPENDIX D ERROR MESSAGES

A-46

(2/2)

No. Error message Explanation User action Restrictions

‒ Illegal void type An initial value is set for void-
type variables (not a pointer).

Review the specification of the
void type.

‒ Undeclared name
(%s)

The specified define value or
GLB or VAL name was not
found.

Review the input file data.
Check the GLB and VAL
registration of the site.

‒ Site is not
specified

An attempt was made to
resolve addresses of GLB and
VAL names, but the site is not
specified.

Specify the site, and then try
again.

‒ Cannot alloc
memory

Memory cannot be allocated
by using malloc.

Check the amount of available
memory, and then try again.

‒ Allocator
management table
is busy

The allocator management
table is being used by another
command.

Wait until the other command
finishes, and then try again.

‒ Cannot make
temporary file
(%s)

Failed to generate a temporary
file name.

Check the output file creation
directory, the access rights of
the directory indicated by the
environment variable
(%TMP%), and the amount of
available disk space, and then
try again.

‒ Cannot open
temporary file
(%s)

Failed to generate a temporary
file.

‒ Cannot write
output file

Failed to write the output file.

‒ Cannot rename
(%s)

Failed to rename the output
file.

The Restrictions column shows the correspondence with 4.4 Data Generator in PART 1.
For details, see the applicable restrictions.
Restriction: (b) Differences from C language declaration statements and restrictions
Preprocessor: (e) Restrictions on preprocessor functions
Initial value: (f) Specifications of initial value type conversion

APPENDIX E NOTES ON USING RPDP

A-47

APPENDIX E NOTES ON USING RPDP

(1) Recovery from suspension of processing by the ld subcommand of the svdebug command

When processing by the ld subcommand of the svdebug command is suspended due to, for
example, a communication error, an inconsistency might arise between the memory in the
S10VE and the backup files for the site on the development machine. To prevent this, RPDP
recovers the ld subcommand. During recovery processing, the suspended ld subcommand is
re-run to place the subcommand in the state after execution. Recovery processing is performed
when the RPDP command is run or the development machine starts up. If the communication
error persists, however, an error message such as Communication error (connection
timeout) or Communication error (inter-PU communication timeout)
appears, preventing the use of RPDP commands. To resolve this problem, perform the following
operation:

Operation
svsitecntl -rssrcv site-name

After performing this operation, commands can be run without the need for RPDP to perform
recovery processing. Note, however, that because the ld subcommand has not yet been
recovered, no other ld subcommand can be run for the site after the operation.
The error message is as follows:
Cannot use ld sub comannd after RSSRCV set (NO.2100-44)
This restriction continues until the svrpl command is run for downloading to the site.

APPENDIX E NOTES ON USING RPDP

A-48

(2) Notes on use
 When transferring a text file to be entered into the debugger (svdebug) from another

machine to the current machine via FTP, be sure to enable ASCII mode.

Restrictions:
 The following names are reserved. These names, including those followed by extensions such

as .c, .obj, and .txt, cannot be used as site names, unit names, directory names, or file
names.

• AUX • CON • NUL
• COM1 • LPT1 • PRN
• COM2 • LPT2
• COM3 • LPT3
• COM4 • LPT4
• COM5 • LPT5
• COM6 • LPT6
• COM7 • LPT7
• COM8 • LPT8
• COM9 • LPT9

 A file on another disk cannot be specified by the ld, cm, or sv subcommand of the
svdebug command with the -f option specified.

APPENDIX F MAP DISPLAY FORMAT

A-49

APPENDIX F MAP DISPLAY FORMAT

The following map information is output:
(1) Header and footer
(2) Global area information
(3) Split area information
(4) Secondary partition area information
(5) Program information
(6) Subprogram information
(7) Task information
(8) Global information
(9) VAL information
(10) IRSUB entry information
(11) IRGLB entry information
(12) ULSUB entry information
(13) Information about how much physical memory is available

Map information output format
Map information can be output in the following formats:
(1) Hierarchical map output
(2) Address-order list output
(3) Name-order list output
(4) Numerical-order list output
(5) Specified name output

The hierarchical map output format is used to hierarchically output map information about
resources arranged in a logical space for individual global or split areas.
The listing output formats are used to output specified information in address order, name order, or
numerical order.
The name of a resource can also be specified to output information about that name.

APPENDIX F MAP DISPLAY FORMAT

A-50

The following describes the map information output formats.
The underlined portions in the following display formats are the output map information, which
varies with the map output target.

(1) Header and footer field

The map information is to be output with a header attached to the beginning and a footer
attached to the end.
The header and footer formats are as follows.
(a) Header

** allocator map **:
Displays a header string.

** allocator map **: This header is used for normal map output.
** allocator map (CON) **: This header is used for controller logical

spacemap output (when -CON is specified).

YYYY/MM/DD hh:mm:ss:

Displays the time at which the map output command (svmap) was started.
YYYY: Year (4-digit)
MM: Month
DD: Day
hh:mm:ss: Hour, minute, and second

site: Displays the name of a site that is targeted for map information display.

(b) Footer

** allocator map ** YYYY/MM/DD hh:mm:ss

 site name = site

** map output end **

APPENDIX F MAP DISPLAY FORMAT

A-51

(2) Global area information
The map of global areas defined at the time of system generation is displayed.
The start address of the logical space of a global area is fixed.

gname: Name of a global area.
laddr: Logical address of the beginning of a global area.
paddr: Physical address of the beginning of a global area.
size: Size of a global area.

Table A-3 Real-Time Source Management Status

Symbol Status Meaning

@ not-build
Loaded into a backup file only.

+ defined-POC
. defined Loaded into a backup file as well as the memory of a real machine.

- defined-CON
Loaded into the memory of a real machine only.
After a download, deleted only from the development machine.

* unmatch Loaded into a backup file and the memory of a real machine, but mismatched.

_ non_exist2
Downloaded without running dload for an IRSUB and a built-in subprogram
for which dbuild has been run.

When -CON is specified, the display does not show s, date, lddate, or svdate.

< garea >
gname laddr paddr size
$MAP 20000000 paddr size
$CPMS 28000000 paddr size
$TASK 30000000 paddr size
$GLBR 40000000 paddr size
$GLBRW 50000000 paddr size
$IRSUB 60000000 paddr size
$CM 70000000 paddr size
$DCM 75000000 paddr size
$LADDER 78000000 paddr size
$USRFUNC 7B000000 paddr size
$HIFLOW 7C000000 paddr size

APPENDIX F MAP DISPLAY FORMAT

A-52

(3
)

S
pl

it
 a

re
a

in
fo

rm
at

io
n

In
fo

rm
at

io
n

ab
ou

t s
pl

it
 a

re
as

 a
ll

oc
at

ed
 b

y
sv

df
a

is
 d

is
pl

ay
ed

.

ga
re

a:

S
ho

w
s

th
e

G
A

R
E

A
 n

am
e

of
 th

e
pa

re
nt

 g
lo

ba
l a

re
a.

$
M
A
P

: R
ep

re
se

nt
s

a
m

ap
 in

fo
rm

at
io

n
st

or
ag

e
ar

ea
.

$
T
A
S
K

: R
ep

re
se

nt
s

a
ta

sk
 s

to
ra

ge
 a

re
a.

$
C
M

: R
ep

re
se

nt
s

an
 in

te
r-

P
U

 s
ha

re
d

m
em

or
y

st
or

ag
e

ar
ea

.
$
D
C
M

: R
ep

re
se

nt
s

a
du

pl
ex

ed
 s

ha
re

d
m

em
or

y
st

or
ag

e
ar

ea
.

$
G
L
B
R

: R
ep

re
se

nt
s

a
re

ad
-o

nl
y

G
L

B
 s

to
ra

ge
 a

re
a.

$
G
L
B
R
W

: R
ep

re
se

nt
s

a
re

ad
/w

ri
te

 G
L

B
 s

to
ra

ge
 a

re
a.

$
I
R
S
U
B

: R
ep

re
se

nt
s

a
su

bp
ro

gr
am

 s
to

ra
ge

 a
re

a.

$
L
A
D
D
E
R

: R
ep

re
se

nt
s

a
L

A
D

D
E

R
 p

ro
gr

am
 s

to
ra

ge
 a

re
a.

$
U
S
R
F
U
N
C

: R
ep

re
se

nt
s

a
us

er
 c

al
cu

la
ti

on
 f

un
ct

io
n

ar
ea

.
$
H
I
F
L
O
W

: R
ep

re
se

nt
s

a
H

I-
F

L
O

W
 p

ro
gr

am
 s

to
ra

ge
 a

re
a.

an

am
e:

 S
ho

w
s

th
e

na
m

e
of

 a
 s

pl
it

 a
re

a.

A
 b

la
nk

 s
pl

it
 a

re
a

na
m

e
fi

el
d

re
pr

es
en

ts
 a

n
un

oc
cu

pi
ed

 a
re

a.

s:

In
di

ca
te

s
th

e
re

so
ur

ce
 s

ta
tu

s.

F
or

 d
et

ai
ls

 o
n

th
e

re
so

ur
ce

 s
ta

tu
s,

 s
ee

 T
ab

le
 A

-3
.

k:

In
di

ca
te

s
th

e
ow

ne
r

ty
pe

 (
s

: s
ys

te
m

; u
: u

se
r)

.
ra

dd
r:

S

ho
w

s
th

e
re

la
ti

ve
 a

dd
re

ss
 o

f
th

e
be

gi
nn

in
g

of
 a

 s
pl

it
 a

re
a

in
 r

el
at

io
n

to

th
e

be
gi

nn
in

g
of

 a
 g

lo
ba

l a
re

a
in

 8
-d

ig
it

 f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

si

ze
:

S
ho

w
s

th
e

si
ze

 o
f

a
sp

li
t a

re
a

in
 8

-d
ig

it
 f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

la
dd

r:

S
ho

w
s

th
e

st
ar

t l
og

ic
al

 a
dd

re
ss

 o
f

a
sp

li
t a

re
a

in
 8

-d
ig

it
 f

ix
ed

he

xa
de

ci
m

al
 n

ot
at

io
n.

ki

nd
:

In
di

ca
te

s
th

e
sp

li
t a

re
a

ty
pe

.
g
l
b
i

: R
ep

re
se

nt
s

a
re

ad
/w

ri
te

 g
lo

ba
l a

re
a

w
it

h
an

 in
it

ia
l v

al
ue

.
g
l
b
w

: R
ep

re
se

nt
s

a
re

ad
/w

ri
te

 g
lo

ba
l a

re
a

w
it

ho
ut

 a
n

in
it

ia
l v

al
ue

.
g
l
b
r

: R
ep

re
se

nt
s

a
re

ad
-o

nl
y

gl
ob

al
 a

re
a

w
it

h
an

 in
it

ia
l v

al
ue

.

c
m
i

:
R

ep
re

se
nt

s
an

 in
te

r-
P

U
 (

pr
oc

es
so

r)
 s

ha
re

d
m

em
or

y
ar

ea
 w

it
h

an

in
it

ia
l v

al
ue

.
c
m
w

:
R

ep
re

se
nt

s
an

 in
te

r-
P

U
 (

pr
oc

es
so

r)
 s

ha
re

d
m

em
or

y
ar

ea
 w

it
ho

ut

an
 in

it
ia

l v
al

ue
.

d
c
m
i

: R
ep

re
se

nt
s

a
du

pl
ex

ed
 (

in
te

r-
co

nt
ro

ll
er

)
sh

ar
ed

 m
em

or
y

ar
ea

 w
it

h
an

 in
it

ia
l v

al
ue

.
d
c
m
w

:
R

ep
re

se
nt

s
a

du
pl

ex
ed

 (
in

te
r-

co
nt

ro
ll

er
)

sh
ar

ed
 m

em
or

y
ar

ea

w
it

ho
ut

 a
n

in
it

ia
l v

al
ue

.
t
a
s
k

:
R

ep
re

se
nt

s
a

ta
sk

 s
to

ra
ge

 a
re

a.

s
u
b

:
R

ep
re

se
nt

s
a

su
bp

ro
gr

am
 s

to
ra

ge
 a

re
a.

o
s
t
b
l

: R
ep

re
se

nt
s

a
re

se
rv

ed
 O

S
 a

re
a.

bk

up
fi

le
: S

ho
w

s
th

e
na

m
e

of
 a

 b
ac

ku
p

fi
le

 th
at

 s
to

re
s

th
e

in
iti

al
 v

al
ue

 o
f

a
sp

li
t

ar
ea

.
F

or
 a

 G
L

B
, C

M
, a

nd
 D

C
M

 a
re

a
w

it
ho

ut
 a

n
in

it
ia

l v
al

ue
, t

hi
s

fi
el

d
is

bl

an
k.

da

te
:

S
ho

w
s

th
e

ti
m

e
at

 w
hi

ch
 a

 s
pl

it
ar

ea
 w

as
 g

en
er

at
ed

 b
y
s
v
d
f
a

.
ld

da
te

:
S

ho
w

s
th

e
ti

m
e

of
 d

ow
nl

oa
di

ng
 to

 th
e

S
10

V
E

 m
em

or
y.

 W
he

n
no

 s
uc

h
do

w
nl

oa
d

is
 c

om
pl

et
e,

 th
is

 f
ie

ld
 is

 b
la

nk
.

sv
da

te
:

S
ho

w
s

th
e

ti
m

e
at

 w
hi

ch
 th

e
s
v

 s
ub

co
m

m
an

d
of

 th
e

de
bu

gg
er

 w
as

 u
se

d
fo

r
st

or
ag

e
in

 a
 b

ac
ku

p
fi

le
.

W
he

n
no

 s
uc

h
st

or
ag

e
op

er
at

io
n

is
 c

om
pl

et
e,

 th
is

 f
ie

ld
 is

 b
la

nk
.

 T
he

 d
is

pl
ay

 s
ho

w
s
d
a
t
e

, l
d
d
a
t
e

, a
nd

 s
v
d
a
t
e

 o
nl

y
w

he
n

th
e
-
f

 o
pt

io
n

is

sp
ec

if
ie

d.

(W
he

n
-
C
O
N

 is
 s

pe
ci

fi
ed

, s
, d
a
t
e

, l
d
d
a
t
e

, a
nd

 s
v
d
a
t
e

 a
re

 n
ot

 s
ho

w
n.

)

<

a
r
e
a

>

g
a
r
e
a
/
a
n
a
m
e

r
a
d
d
r

s
i
z
e

l
a
d
d
r

k
i
n
d

b
k
u
p
f
i
l
e

d
a
t
e

l
d
d
a
t
e

s
v
d
a
t
e

ga
re

a/
an

am
e

s
k

ra
dd

r
si

ze

la
dd

r
ki

nd

bk
up

fil
e

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

Y
YY

Y
/M

M
/D

D
 h

h:
m

m
:s

s
Y

Y
YY

/M
M

/D
D

 h
h:

m
m

:s
s

ga
re

a/

ra
dd

r
si

ze

la
dd

r

APPENDIX F MAP DISPLAY FORMAT

A-53

(4
)

S
ec

on
da

ry
 p

ar
ti

ti
on

 a
re

a
in

fo
rm

at
io

n

In
fo

rm
at

io
n

ab
ou

t s
ec

on
da

ry
 p

ar
ti

ti
on

 a
re

as
 is

 d
is

pl
ay

ed
.

ga

re
a:

S

ho
w

s
th

e
G

A
R

E
A

 n
am

e
of

 th
e

pa
re

nt
 g

lo
ba

l a
re

a.

T
he

 m
ea

ni
ng

s
of

 th
e

di
sp

la
ye

d
G

A
R

E
A

 n
am

es
 a

re
 th

e
sa

m
e

as
 th

os
e

de
sc

ri
be

d
in

 (
3)

 S
pl

it
 a

re
a

in
fo

rm
at

io
n.

an

am
e:

 S
ho

w
s

th
e

na
m

e
of

 a
 s

pl
it

 a
re

a.

sn
am

e:
 S

ho
w

s
th

e
na

m
e

of
 a

 s
ec

on
da

ry
 p

ar
ti

ti
on

 a
re

a.

A
 b

la
nk

 s
ec

on
da

ry
 p

ar
ti

ti
on

 a
re

a
na

m
e

fi
el

d
re

pr
es

en
ts

 a
n

un
oc

cu
pi

ed
 a

re
a.

s:

In

di
ca

te
s

th
e

re
so

ur
ce

 s
ta

tu
s.

F

or
 d

et
ai

ls
 o

n
th

e
re

so
ur

ce
 s

ta
tu

s,
 s

ee
 T

ab
le

 A
-3

.
k:

In

di
ca

te
s

th
e

ow
ne

r
ty

pe
 (
s

: s
ys

te
m

; u
: u

se
r)

.
ra

dd
r:

S

ho
w

s
th

e
re

la
ti

ve
 b

yt
e

ad
dr

es
s

of
 th

e
be

gi
nn

in
g

of
 a

 s
ec

on
da

ry
 p

ar
ti

ti
on

 a
re

a
in

 r
el

at
io

n
to

 th
e

be
gi

nn
in

g
of

 a
 s

pl
it

 a
re

a
in

 8
-d

ig
it

 f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

si

ze
:

S
ho

w
s

th
e

si
ze

 o
f

a
se

co
nd

ar
y

pa
rt

it
io

n
ar

ea
 in

 8
-d

ig
it

 f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

la

dd
r:

S

ho
w

s
th

e
st

ar
t l

og
ic

al
 a

dd
re

ss
 o

f
a

se
co

nd
ar

y
pa

rt
it

io
n

ar
ea

 in
 8

-d
ig

it
 f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

da
te

:
S

ho
w

s
th

e
ti

m
e

at
 w

hi
ch

 a
 s

ec
on

da
ry

 p
ar

ti
ti

on
 a

re
a

w
as

 a
ll

oc
at

ed
 b

y
s
v
d
f
s

 o
r

th
e

ti
m

e
at

 w
hi

ch
 a

 p
ro

gr
am

 o
r

su
bp

ro
gr

am
 w

as
 lo

ad
ed

 in
to

 a
 b

ac
ku

p
fi

le
 b

y
s
v
l
o
a
d

.
ld

da
te

:
S

ho
w

s
th

e
ti

m
e

of
 d

ow
nl

oa
di

ng
 to

 th
e

S
10

V
E

 m
em

or
y.

W

he
n

no
 s

uc
h

do
w

nl
oa

d
is

 c
om

pl
et

e,
 th

is
 f

ie
ld

 is
 b

la
nk

.
sv

da
te

:
S

ho
w

s
th

e
ti

m
e

at
 w

hi
ch

 th
e
s
v

 s
ub

co
m

m
an

d
of

 th
e

de
bu

gg
er

 w
as

 u
se

d
fo

r
st

or
ag

e
to

 a
 b

ac
ku

p
fi

le
.

W
he

n
no

 s
uc

h
st

or
ag

e
op

er
at

io
n

is
 c

om
pl

et
e,

 th
is

 f
ie

ld
 is

 b
la

nk
.

 T
he

 d
is

pl
ay

 s
ho

w
s
d
a
t
e

, l
d
d
a
t
e

, a
nd

 s
v
d
a
t
e

 o
nl

y
w

he
n

th
e
-
f

 o
pt

io
n

is
 s

pe
ci

fi
ed

 (
s

, d
a
t
e

, l
d
d
a
t
e

, a
nd

 s
v
d
a
t
e

 d
o

no
t a

pp
ea

r
on

 th
e

di
sp

la
y

w
he

n
-
C
O
N

 is

sp
ec

if
ie

d)
.

<

s
a
r
e
a

>

g
a
r
e
a
/
a
n
a
m
e
/
s
n
a
m
e

r
a
d
d
r

s
i
z
e

l
a
d
d
r

d
a
t
e

l
d
d
a
t
e

s
v
d
a
t
e

ga
re

a/
an

am
e/

sn
am

e

s
k

ra
dd

r

si
ze

la
dd

r

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

Y
YY

Y/
M

M
/D

D
 h

h:
m

m
:s

s

ga
re

a/
an

am
e/

ra
dd

r

si
ze

la
dd

r

APPENDIX F MAP DISPLAY FORMAT

A-54

(5
)

P
ro

gr
am

 in
fo

rm
at

io
n

In
fo

rm
at

io
n

ab
ou

t p
ro

gr
am

s
is

 d
is

pl
ay

ed
.

T
he

 p
ro

gr
am

 in
fo

rm
at

io
n

di
sp

la
y

fo
rm

at
 is

 th
e

sa
m

e
fo

r
(7

)
T

as
k

in
fo

rm
at

io
n.

Fo

r
th

e
m

ea
ni

ng
 o

f
ea

ch
 f

ie
ld

, s
ee

 (
7)

 T
as

k
in

fo
rm

at
io

n.

T
he

 p
ro

gr
am

 in
fo

rm
at

io
n

di
sp

la
y

an
d

ta
sk

 in
fo

rm
at

io
n

di
sp

la
y

ha
ve

 th
e

fo
ll

ow
in

g
tw

o
di

ff
er

en
ce

s:

•
B

y
de

fa
ul

t,
so

rt
in

g
is

 p
er

fo
rm

ed
 b

y
pr

og
ra

m
 n

am
e

w
he

n
a

pr
og

ra
m

 is
 s

pe
ci

fi
ed

 (
-
p

)
or

 b
y

ta
sk

 n
um

be
r

w
he

n
ta

sk
 in

fo
rm

at
io

n
is

 s
pe

ci
fi

ed

(-
t

).

•
W

he
n

in
fo

rm
at

io
n

is
 d

is
pl

ay
ed

 w
it

h
a

na
m

e
sp

ec
if

ie
d,

 th
e

sp
ec

if
ie

d
na

m
e

is
 h

an
dl

ed
 a

s
a

pr
og

ra
m

 n
am

e
if

 a
 p

ro
gr

am
 is

 s
pe

ci
fi

ed
 (
-
p

)
or

 a
s

a
ta

sk
 n

am
e

if
 ta

sk
 in

fo
rm

at
io

n
is

 s
pe

ci
fi

ed
 (
-
t

).

 (6
)

S
ub

pr
og

ra
m

 in
fo

rm
at

io
n

In
fo

rm
at

io
n

ab
ou

t s
ub

pr
og

ra
m

s
is

 d
is

pl
ay

ed
.

T

he
 s

ub
pr

og
ra

m
 in

fo
rm

at
io

n
di

sp
la

y
fo

rm
at

 is
 th

e
sa

m
e

as
 f

or
 (

10
)

IR
S

U
B

 e
nt

ry
 in

fo
rm

at
io

n
an

d
(1

2)
 U

L
S

U
B

 e
nt

ry
 in

fo
rm

at
io

n.
 I

nf
or

m
at

io
n

ab
ou

t b
ot

h
IR

S
U

B
s

an
d

bu
il

t-
in

 s
ub

pr
og

ra
m

s
ap

pe
ar

s
on

 th
e

di
sp

la
y.

Fo

r
th

e
m

ea
ni

ng
 o

f
ea

ch
 f

ie
ld

, s
ee

 (
10

)
IR

S
U

B
 e

nt
ry

 in
fo

rm
at

io
n

an
d

(1
2)

 U
L

S
U

B
 e

nt
ry

 in
fo

rm
at

io
n.

<

I
R
S
U
B

>

[
m
a
x
_
e
n
t
r
y
=

m
en

tr
y,

u
s
e
_
e
n
t
r
y
=

ue
nt

ry
]

i
r
n
o

e
n
t
n
a
m
e

s
t

l
a
d
d
r

s
u
b
n
a
m
e

o
f
f
s
e
t

t
e
x
t
t
o
p

b
s
s
l
a
s
t

t
s
i
z
e

d
s
i
z
e

b
s
i
z
e

e
x
t
r
a

s
s
i
z
e
(
p
a
r
t

)

d
a
t
a
t
o
p

b
s
s
t
o
p

d
a
t
e

l
d
d
a
t
e

en
tn

am
e

s
k

st

la
dd

r

su
bn

am
e

00
00

00

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

en
tn

am
e

s
k

st

la
dd

r

su
bn

am
e

of
fs

et

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

ir
no

en
tn

am
e

s
k

st

la
dd

r

su
bn

am
e

00
00

00

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
Y

Y/
M

M
/D

D
 h

h:
m

m
:s

s
ir

no

en
tn

am
e

s
k

st

la
dd

r

su
bn

am
e

of
fs

et

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
Y

Y/
M

M
/D

D
 h

h:
m

m
:s

s

<

U
L
S
U
B

>

p
n
t

t
y
p

b

e
n
t

s
u
b
n
a
m
e

t
e
x
t
t
o
p

b
s
s
l
a
s
t

t
s
i
z
e

d
s
i
z
e

b
s
i
z
e

e
x
t
r
a

s
s
i
z
e
(
p
a
r
t

)

d
a
t
a
t
o
p

b
s
s
t
o
p

d
a
t
e

l
d
d
a
t
e

pn
t

ty
p

b
en

t
su

bn
am

e

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

<

t
a
s
k
-
p
r
o
g
r
a
m

>

t
n

t
n
a
m
e

t
n
o
x

r
m
t
n

l
v
l

s
p

p
n
a
m
e

s
t

m
t
n

t
e
x
t
t
o
p

l
a
s
t
a
d
d
r

t
s
i
z
e

d
s
i
z
e

s
s
i
z
e
(
p
a
r
t

)

b
s
i
z
e

e
x
t
r
a

o
s
w
o
r
k

d
a
t
a
t
o
p

b
s
s
t
o
p

d
a
t
e

l
d
d
a
t
e

pn
am

e

s
k

st

m
tn

te
xt

to
p

la
st

ad
dr

ts
iz

e

ds
iz

e

ss
iz

e(
pa

rt
)

bs
iz

e

ex
tr

a

os
w

or
k

da
ta

to
p

bs
st

op

tn

tn
am

e

s
k

tn
ox

rm
tn

lv
l

sp

pn
am

e

s
k

st

m
tn

te
xt

to
p

la
st

ad
dr

ts
iz

e

ds
iz

e

ss
iz

e(
pa

rt
)

bs
iz

e

ex
tr

a

os
w

or
k

da
ta

to
p

bs
st

op

Y
Y

YY
/M

M
/D

D
 h

h:
m

m
:s

s
Y

Y
Y

Y
/M

M
/D

D
 h

h:
m

m
:s

s

(a

)
T

as
k

in
fo

rm
at

io
n

fi
el

d
(b

)
Pr

og
ra

m
 in

fo
rm

at
io

n
fi

el
d

(c
)

D
et

ai
le

d
in

fo
rm

at
io

n
fi

el
d

APPENDIX F MAP DISPLAY FORMAT

A-55

(7
)

T
as

k
in

fo
rm

at
io

n
T

he
 in

fo
rm

at
io

n
ab

ou
t t

as
ks

 is
 d

is
pl

ay
ed

.

(a
)

T
as

k
in

fo
rm

at
io

n
fi

el
d

tn
: S

ho
w

s
a

ta
sk

 n
um

be
r

in
 4

-d
ig

it
 f

ix
ed

 d
ec

im
al

 n
ot

at
io

n.

tn
am

e:
 S

ho
w

s
th

e
na

m
e

of
 a

 ta
sk

.
s:

S

ho
w

s
th

e
st

at
us

 o
f

a
ta

sk
.

F
or

 d
et

ai
ls

 o
n

th
e

re
so

ur
ce

 s
ta

tu
s,

 s
ee

 T
ab

le
 A

-3
.

k:

In
di

ca
te

s
th

e
ow

ne
r

ty
pe

 (
s:

 s
ys

te
m

; u
:

us
er

).

tn
ox

:
S

ho
w

s
a

ta
sk

 n
um

be
r

in
 4

-d
ig

it
fi

xe
d

he
xa

de
ci

m
al

 n
ot

at
io

n.

rm
tn

:
S

ho
w

s
a

m
ul

ti
ta

sk
 n

um
be

r
(u

se
d

st
ac

k
po

si
ti

on
)

in
 4

-d
ig

it
 f

ix
ed

he

xa
de

ci
m

al
 n

ot
at

io
n.

 R
ea

ds
 0
0
0
1

 f
or

 a
 s

in
gl

e
ta

sk
.

lv
l:

In

di
ca

te
s

a
ta

sk
 le

ve
l i

n
2-

di
gi

t f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

sp

:
S

ho
w

s
th

e
en

d
lo

gi
ca

l a
dd

re
ss

 o
f

th
e

st
ac

k
us

ed
 b

y
a

ta
sk

 in
 8

-d
ig

it

fi
xe

d
he

xa
de

ci
m

al
 n

ot
at

io
n.

(b

)
P

ro
gr

am
 in

fo
rm

at
io

n
fi

el
d

pn
am

e:
 S

ho
w

s
th

e
na

m
e

of
 a

 p
ro

gr
am

.
s:

S

ho
w

s
th

e
st

at
us

 o
f

a
pr

og
ra

m
.

F
or

 d
et

ai
ls

 o
n

th
e

re
so

ur
ce

 s
ta

tu
s,

 s
ee

 T
ab

le
 A

-3
.

k:

In
di

ca
te

s
th

e
ow

ne
r

ty
pe

 (
s:

 s
ys

te
m

; u
:

us
er

).

st
:

In
di

ca
te

s
th

e
us

ag
e

of
 a

 p
ro

gr
am

.
ls

:
In

di
ca

te
s

th
at

 th
e

pr
og

ra
m

 is
 n

ot
 r

eg
is

te
re

d
as

 a
 ta

sk
.

lm
:

In
di

ca
te

s
th

at
 th

e
pr

og
ra

m
 is

 lo
ad

ed
 a

s
a

m
ul

ti
ta

sk
 a

nd
 n

ot
 r

eg
is

te
re

d
as

 a
 ta

sk
.

cs
:

In
di

ca
te

s
th

at
 th

e
pr

og
ra

m
 is

 r
eg

is
te

re
d

as
 a

 ta
sk

.
cm

:
In

di
ca

te
s

th
at

 th
e

pr
og

ra
m

 is
 lo

ad
ed

 a
s

a
m

ul
ti

ta
sk

 a
nd

 r
eg

is
te

re
d

as
 a

ta

sk
.

N
ot

e:
 F

or
 a

 p
ro

gr
am

 n
ot

 g
en

er
at

ed
 a

s
a

ta
sk

, t
he

 ta
sk

 in
fo

rm
at

io
n

fi
el

d
is

 b
la

nk
.

m

tn
:

In
di

ca
te

s
th

e
nu

m
be

r
of

 ta
sk

s
co

nt
ai

ne
d

in
 a

 m
ul

ti
ta

sk
 in

 4
-d

ig
it

fi

xe
d

he
xa

de
ci

m
al

 n
ot

at
io

n.
 R

ea
ds

 0
0
0
1

 f
or

 a
 s

in
gl

e
ta

sk
.

te
xt

to
p:

S

ho
w

s
th

e
st

ar
t l

og
ic

al
 a

dd
re

ss
 o

f
a

te
xt

 p
ar

t i
n

8-
di

gi
t f

ix
ed

he

xa
de

ci
m

al
 n

ot
at

io
n.

la

st
ad

dr
: S

ho
w

s
th

e
en

d
lo

gi
ca

l a
dd

re
ss

 o
f

a
pr

og
ra

m
 in

 8
-d

ig
it

 f
ix

ed

he
xa

de
ci

m
al

 n
ot

at
io

n.

ts
iz

e:

S
ho

w
s

th
e

si
ze

 o
f

a
te

xt
 p

ar
t i

n
6-

di
gi

t f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

ds

iz
e:

S

ho
w

s
th

e
si

ze
 o

f
a

da
ta

 p
ar

t i
n

6-
di

gi
t f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

ss
iz

e
(p

ar
t)

: S
ho

w
s

th
e

si
ze

 o
f

a
st

ac
k

in
 6

-d
ig

it
 f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

T
he

 (
pa

rt
)

se
ct

io
n

sh
ow

s
th

e
st

ac
k

si
ze

 f
or

 u
se

 b
y

th
e

pr
og

ra
m

sp

ec
if

ie
d

fo
r

th
e

lo
ad

er
.

bs
iz

e:

S
ho

w
s

th
e

si
ze

 o
f

a
B

S
S

 p
ar

t i
n

6-
di

gi
t f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

ex
tr

a:

S
ho

w
s

th
e

re
du

nd
an

cy
 b

yt
e

si
ze

 s
pe

ci
fi

ed
 f

or
 a

 lo
ad

 o
pe

ra
tio

n
in

 6
-

di
gi

t f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

os

w
or

k:
 S

ho
w

s
th

e
si

ze
 o

f
O

S
 w

or
k

in
 6

-d
ig

it
 f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

(c
)

D
et

ai
le

d
in

fo
rm

at
io

n
fi

el
d

da
ta

to
p:

 S
ho

w
s

th
e

st
ar

t l
og

ic
al

 a
dd

re
ss

 o
f

a
da

ta
 p

ar
t i

n
8-

di
gi

t f
ix

ed

he
xa

de
ci

m
al

 n
ot

at
io

n.

bs
st

op
:

S
ho

w
s

th
e

st
ar

t l
og

ic
al

 a
dd

re
ss

 o
f

a
B

S
S

 p
ar

t i
n

8-
di

gi
t f

ix
ed

he

xa
de

ci
m

al
 n

ot
at

io
n.

da

te
:

S
ho

w
s

th
e

ti
m

e
at

 w
hi

ch
 a

 ta
sk

 w
as

 g
en

er
at

ed
 w

it
h
s
v
c
t
a
s
k

. I
f

no

su
ch

 ta
sk

 is
 g

en
er

at
ed

, t
hi

s
fi

el
d

is
 b

la
nk

.
ld

da
te

:
S

ho
w

s
th

e
ti

m
e

of
 d

ow
nl

oa
di

ng
 to

 th
e

S
10

V
E

 m
em

or
y.

If

 n
o

su
ch

 d
ow

nl
oa

d
is

 c
om

pl
et

e,
 th

is
 f

ie
ld

 is
 b

la
nk

.
T

he
 d

et
ai

le
d

in
fo

rm
at

io
n

fi
el

d
ap

pe
ar

s
on

ly
 w

he
n

th
e
-
f

 o
pt

io
n

is
 s

pe
ci

fi
ed

.

<

t
a
s
k
-
p
r
o
g
r
a
m

>

t
n

t
n
a
m
e

t
n
o
x

r
m
t
n

l
v
l

s
p

p
n
a
m
e

s
t

m
t
n

t
e
x
t
t
o
p

l
a
s
t
a
d
d
r

t
s
i
z
e

d
s
i
z
e

s
s
i
z
e
(
p
a
r
t

)

b
s
i
z
e

e
x
t
r
a

o
s
w
o
r
k

d
a
t
a
t
o
p

b
s
s
t
o
p

d
a
t
e

l
d
d
a
t
e

pn
am

e

s
k

st

m
tn

te
xt

to
p

la
st

ad
dr

ts
iz

e

ds
iz

e

ss
iz

e(
pa

rt
)

bs
iz

e

ex
tr

a

os
w

or
k

da
ta

to
p

bs
st

op

tn

tn
am

e

s
k

tn
ox

rm
tn

l
v
l

sp

pn
am

e

s
k

st

m
tn

te
xt

to
p

la
st

ad
dr

ts
iz

e

ds
iz

e

ss
iz

e(
pa

rt
)

bs
iz

e

ex
tr

a

os
w

or
k

da
ta

to
p

bs
st

op

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

Y
YY

Y
/M

M
/D

D
 h

h:
m

m
:s

s

(a
)

T
as

k
in

fo
rm

at
io

n
fi

el
d

(b
)

Pr
og

ra
m

 in
fo

rm
at

io
n

fi
el

d
(c

)
D

et
ai

le
d

in
fo

rm
at

io
n

fi
el

d

APPENDIX F MAP DISPLAY FORMAT

A-56

(8
)

G
lo

ba
l i

nf
or

m
at

io
n

In
fo

rm
at

io
n

ab
ou

t g
lo

ba
l d

at
a

(G
L

B
, C

M
, a

nd
 D

C
M

)
is

 d
is

pl
ay

ed
.

T

he
 g

lo
ba

l i
nf

or
m

at
io

n
di

sp
la

y
fo

rm
at

 is
 th

e
sa

m
e

as
 f

or
 (

11
)

IR
G

L
B

 e
nt

ry
 in

fo
rm

at
io

n.
 F

or
 th

e
m

ea
ni

ng
 o

f
ea

ch
 f

ie
ld

, s
ee

 (
11

)
IR

G
L

B
 e

nt
ry

in

fo
rm

at
io

n.

G
lo

ba
l i

nf
or

m
at

io
n

an
d

IR
G

L
B

 e
nt

ry
 in

fo
rm

at
io

n
ha

ve
 th

e
fo

ll
ow

in
g

tw
o

di
ff

er
en

ce
s:

•

B
y

de
fa

ul
t,

so
rt

in
g

is
 p

er
fo

rm
ed

 b
y

gl
ob

al
 n

am
e

w
he

n
gl

ob
al

 d
at

a
is

 s
pe

ci
fi

ed
 (
-
g

)
or

 b
y

IR
G

L
B

 n
um

be
r

w
he

n
IR

G
L

B
 e

nt
ry

 in
fo

rm
at

io
n

is

sp
ec

if
ie

d
(-
i
r
g

).

•
W

he
n

in
fo

rm
at

io
n

is
 d

is
pl

ay
ed

 w
it

h
a

na
m

e
sp

ec
if

ie
d,

 th
e

sp
ec

if
ie

d
na

m
e

is
 h

an
dl

ed
 a

s
a

gl
ob

al
 n

am
e

if
 g

lo
ba

l d
at

a
is

 s
pe

ci
fi

ed
 (
-
g

).

F
or

 a
n

IR
G

L
B

 e
nt

ry
 (
-
i
r
s

),
 th

e
sp

ec
if

ie
d

nu
m

be
r

is
 h

an
dl

ed
 a

s
an

 I
R

G
L

B
 n

um
be

r.

 (9
)

V
A

L
 in

fo
rm

at
io

n
In

fo
rm

at
io

n
re

la
te

d
to

 v
al

ue
s

(V
A

L
)

is
 d

is
pl

ay
ed

.

en
am

e:
 S

ho
w

s
th

e
na

m
e

of
 a

 v
al

ue
.

k:
 I

nd
ic

at
es

 th
e

ow
ne

r
ty

pe
 (

s:
 s

ys
te

m
; u

: u
se

r)
.

va
lh

ex
: S

ho
w

s
a

va
lu

e
in

 8
-d

ig
it

, f
ix

ed
-l

en
gt

h,
 f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

va
ld

ec
: S

ho
w

s
a

va
lu

e
in

 1
0-

di
gi

t,
va

ri
ab

le
-l

en
gt

h,
 f

ix
ed

 d
ec

im
al

 n
ot

at
io

n.

da
te

: S
ho

w
s

th
e

re
gi

st
ra

ti
on

 ti
m

e.

m
en

tr
y:

 S
ho

w
s

th
e

nu
m

be
r

of
 r

eg
is

tr
ab

le
 V

A
L

 e
nt

ri
es

 in
 6

-d
ig

it
 f

ix
ed

 d
ec

im
al

 n
ot

at
io

n.

ue
nt

ry
: S

ho
w

s
th

e
nu

m
be

r
of

 c
ur

re
nt

ly
 u

se
d

V
A

L
 e

nt
ri

es
 in

 6
-d

ig
it

 f
ix

ed
 d

ec
im

al
 n

ot
at

io
n.

 T

he
 d

is
pl

ay
 s

ho
w

s
d
a
t
e

 o
nl

y
w

he
n

th
e
-
f

 o
pt

io
n

is
 s

pe
ci

fi
ed

.

<

v
a
l
u
e

>

[
m
a
x
_
e
n
t
r
y
=

m
en

tr
y,

u
s
e
_
e
n
t
r
y
=

ue
nt

ry
]

e
n
a
m
e

v
a
l
h
e
x

v
a
l
d
e
c

d
a
t
e

e
n
a
m
e

k
va

lh
ex

va

ld
ec

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

<

g
l
o
b
a
l
,
C
M
,
D
C
M
,
i
r
g
l
b

>

[
m
a
x
_
e
n
t
r
y
=

m
en

tr
y,

u
s
e
_
e
n
t
r
y
=

ue
nt

ry
]

i
r
n
o

e
n
t
n
a
m
e

l
a
d
d
r

s
a
l
n
a
m
e

o
f
f
s
e
t

k
i
n
d

s

k

a
n
a
m
e

s
a
s
i
z
e

d
a
t
a
s
i
z
e

a
o
f
f

d
a
t
e

l
d
d
a
t
e

la
dd

r

sa
ln

am
e

00
00

00

ki
nd

s
k

an
am

e

sa
si

ze

da
ta

si
ze

ao
ff

ir
no

en
tn

am
e

s
k

la
dd

r

sa
ln

am
e

00
00

00

ki
nd

s
k

an
am

e

sa
si

ze

da
ta

si
ze

ao
ff

YY
Y

Y/
M

M
/D

D
 h

h:
m

m
:s

s
YY

Y
Y/

M
M

/D
D

 h
h:

m
m

:s
s

ir
no

en
tn

am
e

s
k

la
dd

r

sa
ln

am
e

of
fs

et

ki
nd

s
k

an
am

e

sa
si

ze

da
ta

si
ze

ao
ff

YY
Y

Y/
M

M
/D

D
 h

h:
m

m
:s

s
YY

Y
Y/

M
M

/D
D

 h
h:

m
m

:s
s

ir
no

en
tn

am
e

s
k

la
dd

r

**
**

**
**

**
**

**

00
00

00

YY
Y

Y/
M

M
/D

D
 h

h:
m

m
:s

s
YY

Y
Y/

M
M

/D
D

 h
h:

m
m

:s
s

(a

)
IR

G
L

B
 e

nt
ry

 f
ie

ld

(b
)

G
L

B
 a

re
a

fi
el

d
(c

)
D

et
ai

le
d

in
fo

rm
at

io
n

fi
el

d

APPENDIX F MAP DISPLAY FORMAT

A-57

(1
0)

 I
R

S
U

B
 e

nt
ry

 in
fo

rm
at

io
n

In
fo

rm
at

io
n

ab
ou

t I
R

S
U

B
 e

nt
ri

es
 is

 d
is

pl
ay

ed
.

m

en
tr

y:
 S

ho
w

s
th

e
nu

m
be

r
of

 r
eg

is
tr

ab
le

 I
R

S
U

B
 e

nt
ri

es
 in

 6
-d

ig
it

 f
ix

ed
 d

ec
im

al

no
ta

ti
on

.
ue

nt
ry

:
S

ho
w

s
th

e
nu

m
be

r
of

 c
ur

re
nt

ly
 u

se
d

IR
S

U
B

 e
nt

ri
es

 in
 6

-d
ig

it
 f

ix
ed

de

ci
m

al
 n

ot
at

io
n.

(a

)
IR

S
U

B
 e

nt
ry

 in
fo

rm
at

io
n

fi
el

d
ir

no
:

In
di

re
ct

 li
nk

 ta
bl

e
en

tr
y

nu
m

be
r.

If

 th
e

IR
S

U
B

 is
 n

ot
 b

ui
lt

, t
he

 i
r
n
o

 f
ie

ld
 is

 b
la

nk
.

en
tn

am
e:

 I
R

S
U

B
 e

nt
ry

 n
am

e.

s:

S
ho

w
s

th
e

st
at

us
 o

f
an

 I
R

S
U

B
 e

nt
ry

.
F

or
 d

et
ai

ls
 o

n
th

e
re

so
ur

ce
 s

ta
tu

s,
 s

ee
 T

ab
le

 A
-3

.
k:

In

di
ca

te
s

th
e

ow
ne

r
ty

pe
 (

s:
 s

ys
te

m
; u

:
us

er
).

(I

f
th

e
IR

S
U

B
 is

 n
ot

 b
ui

lt
, t

hi
s

fi
el

d
is

 b
la

nk
.)

st

:
S

ho
w

s
th

e
IR

S
U

B
 e

nt
ry

 ty
pe

 a
nd

 a
ss

ig
nm

en
t.

il
:

In
di

ca
te

s
th

e
to

p
en

tr
y

fu
nc

ti
on

 o
f

an
 I

R
S

U
B

 th
at

 is
 n

ot
 b

ui
lt

.
m

l:

In
di

ca
te

s
th

e
m

ul
ti

-e
nt

ry
 f

un
ct

io
n

of
 a

n
IR

S
U

B
 th

at
 is

 n
ot

 b
ui

lt
.

ib
:

In
di

ca
te

s
th

e
to

p
en

tr
y

fu
nc

ti
on

 o
f

an
 I

R
S

U
B

 th
at

 is
 b

ui
lt

.
m

b:

In
di

ca
te

s
th

e
m

ul
ti

-e
nt

ry
 f

un
ct

io
n

of
 a

n
IR

S
U

B
 th

at
 is

 b
ui

lt
.

la
dd

r:

S
ho

w
s

th
e

lo
gi

ca
l s

pa
ce

 a
dd

re
ss

 o
f

an
 e

nt
ry

 p
oi

nt
 in

 8
-d

ig
it

 f
ix

ed

he
xa

de
ci

m
al

 n
ot

at
io

n.

su
bn

am
e:

 S
ho

w
s

th
e

na
m

e
of

 a
 s

ub
pr

og
ra

m
 th

at
 c

on
ta

in
s

an
 e

nt
ry

.
of

fs
et

:
S

ho
w

s
th

e
re

la
ti

ve
 o

ff
se

t b
et

w
ee

n
th

e
be

gi
nn

in
g

of
 a

 s
ub

pr
og

ra
m

an

d
an

 e
nt

ry
 p

oi
nt

 in
 6

-d
ig

it
 f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

(b
)

S
ub

pr
og

ra
m

 in
fo

rm
at

io
n

fi
el

d
s:

 I
nd

ic
at

es
 th

e
st

at
us

 o
f

a
su

bp
ro

gr
am

.
F

or
 d

et
ai

ls
 o

n
th

e
re

so
ur

ce
 s

ta
tu

s,
 s

ee
 T

ab
le

 A
-3

.
k:

 I
nd

ic
at

es
 th

e
ow

ne
r

ty
pe

 (
s:

 s
ys

te
m

; u
: u

se
r)

.

te

xt
to

p:

S
ho

w
s

th
e

st
ar

t l
og

ic
al

 a
dd

re
ss

 o
f

a
te

xt
 p

ar
t i

n
8-

di
gi

t f
ix

ed

he
xa

de
ci

m
al

 n
ot

at
io

n.

bs
sl

as
t:

S

ho
w

s
th

e
en

d
lo

gi
ca

l a
dd

re
ss

 o
f

a
B

S
S

 p
ar

t i
n

8-
di

gi
t f

ix
ed

he

xa
de

ci
m

al
 n

ot
at

io
n.

T

he
 e

nd
 lo

gi
ca

l a
dd

re
ss

 is
 a

 v
al

ue
 th

at
 in

cl
ud

es
 th

e
re

du
nd

an
cy

 b
yt

e
si

ze
 (

ex
tr

a)
.

ts
iz

e:

S
ho

w
s

th
e

si
ze

 o
f

a
te

xt
 p

ar
t i

n
6-

di
gi

t f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

ds

iz
e:

S

ho
w

s
th

e
si

ze
 o

f
a

da
ta

 p
ar

t i
n

6-
di

gi
t f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

bs
iz

e:

S
ho

w
s

th
e

si
ze

 o
f

a
B

S
S

 p
ar

t i
n

6-
di

gi
t f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

ex
tr

a:

S
ho

w
s

th
e

re
du

nd
an

cy
 b

yt
e

si
ze

 s
pe

ci
fi

ed
 f

or
 a

 lo
ad

 o
pe

ra
tio

n
in

 6
-

di
gi

t f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

ss

iz
e

(p
ar

t)
: S

ho
w

s
th

e
si

ze
 o

f
a

st
ac

k
in

 6
-d

ig
it

 f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

T

he
 (

pa
rt

)
se

ct
io

n
sh

ow
s

th
e

st
ac

k
si

ze
 f

or
 u

se
 b

y
th

e
su

bp
ro

gr
am

 s
pe

ci
fi

ed
 f

or
 th

e
lo

ad
er

.
(c

)
D

et
ai

le
d

in
fo

rm
at

io
n

fi
el

d
da

ta
to

p:
 S

ho
w

s
th

e
st

ar
t l

og
ic

al
 a

dd
re

ss
 o

f
a

da
ta

 p
ar

t i
n

8-
di

gi
t f

ix
ed

he

xa
de

ci
m

al
 n

ot
at

io
n.

bs

st
op

:
S

ho
w

s
th

e
st

ar
t l

og
ic

al
 a

dd
re

ss
 o

f
a

B
S

S
 p

ar
t i

n
8-

di
gi

t f
ix

ed

he
xa

de
ci

m
al

 n
ot

at
io

n.

da
te

:
S

ho
w

s
th

e
ti

m
e

at
 w

hi
ch

 a
 b

ui
ld

 w
as

 p
er

fo
rm

ed
 w

it
h
s
v
b
u
i
l
d

. I
f

no
 s

uc
h

bu
il

d
w

as
 p

er
fo

rm
ed

, t
hi

s
fi

el
d

is
 b

la
nk

.
ld

da
te

:
S

ho
w

s
th

e
ti

m
e

of
 d

ow
nl

oa
di

ng
 to

 th
e

S
10

V
E

 m
em

or
y.

If

 n
o

su
ch

 d
ow

nl
oa

d
is

 c
om

pl
et

e,
 th

is
 f

ie
ld

 is
 b

la
nk

.

T
he

 d
et

ai
le

d
in

fo
rm

at
io

n
fi

el
d

ap
pe

ar
s

on
ly

 w
he

n
th

e
-
f

 o
pt

io
n

is
 s

pe
ci

fi
ed

.

<

I
R
S
U
B

>

[
m
a
x
_
e
n
t
r
y
=

m
en

tr
y,

u
s
e
_
e
n
t
r
y
=

ue
nt

ry
]

i
r
n
o

e
n
t
n
a
m
e

s
t

l
a
d
d
r

s
u
b
n
a
m
e

o
f
f
s
e
t

t
e
x
t
t
o
p

b
s
s
l
a
s
t

t
s
i
z
e

d
s
i
z
e

b
s
i
z
e

e
x
t
r
a

s
s
i
z
e
(
p
a
r
t

)
d
a
t
a
t
o
p

b
s
s
t
o
p

d
a
t
e

l
d
d
a
t
e

en
tn

am
e

s
k

st

la
dd

r

su
bn

am
e

00
00

00

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

en
tn

am
e

s
k

st

la
dd

r

su
bn

am
e

of
fs

et

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

ir
no

en
tn

am
e

s
k

st

la
dd

r

su
bn

am
e

00
00

00

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

Y
Y

YY
/M

M
/D

D
 h

h:
m

m
:s

s
YY

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

ir
no

en
tn

am
e

s
k

st

la
dd

r

su
bn

am
e

of
fs

et

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

Y
Y

YY
/M

M
/D

D
 h

h:
m

m
:s

s
YY

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

(a

)
IR

S
U

B
 e

nt
ry

 in
fo

rm
at

io
n

fi
el

d
(b

)
S

ub
pr

og
ra

m
 in

fo
rm

at
io

n
fi

el
d

(c
)

D
et

ai
le

d
in

fo
rm

at
io

n
fi

el
d

APPENDIX F MAP DISPLAY FORMAT

A-58

(1
1)

 I
R

G
L

B
 e

nt
ry

 in
fo

rm
at

io
n

m

en
tr

y:
 S

ho
w

s
th

e
nu

m
be

r
of

 r
eg

is
tr

ab
le

 G
L

B
 (

in
cl

ud
in

g
C

M
 a

nd
 D

C
M

)
en

tr
ie

s
in

 6
-d

ig
it

 f
ix

ed
 d

ec
im

al
 n

ot
at

io
n.

ue

nt
ry

:
S

ho
w

s
th

e
nu

m
be

r
of

 c
ur

re
nt

ly
 u

se
d

G
L

B
 (

in
cl

ud
in

g
C

M
 a

nd
 D

C
M

)
en

tr
ie

s
in

 6
-d

ig
it

 f
ix

ed
 d

ec
im

al
 n

ot
at

io
n

(i
nc

lu
di

ng
 th

e
14

 G
L

B
 e

nt
ri

es

fo
r

us
e

by
 th

e
O

S
).

(a

)
IR

G
L

B
 e

nt
ry

 f
ie

ld

ir
no

:
In

di
re

ct
 li

nk
 ta

bl
e

en
tr

y
nu

m
be

r.

(I
f

th
e

en
tr

y
is

 n
ot

 b
ui

lt
 a

s
an

 I
R

G
L

B
, t

hi
s

fi
el

d
is

 b
la

nk
.)

en

tn
am

e:
 R

G
L

B
 e

nt
ry

 n
am

e.

(I
f

th
e

en
tr

y
is

 n
ot

 b
ui

lt
 a

s
an

 I
R

G
L

B
, t

hi
s

fi
el

d
is

 b
la

nk
.)

s:

In

di
ca

te
s

th
e

IR
G

L
B

 e
nt

ry
 s

ta
tu

s.

F
or

 d
et

ai
ls

 o
n

th
e

re
so

ur
ce

 s
ta

tu
s,

 s
ee

 T
ab

le
 A

-3
.

(I
f

th
e

en
tr

y
is

 n
ot

 b
ui

lt
 a

s
an

 I
R

G
L

B
, t

hi
s

fi
el

d
is

 b
la

nk
.)

k:

In

di
ca

te
s

th
e

ow
ne

r
ty

pe
 (

s:
 s

ys
te

m
; u

:
us

er
).

(I

f
th

e
en

tr
y

is
 n

ot
 b

ui
lt

 a
s

an
 I

R
G

L
B

, t
hi

s
fi

el
d

is
 b

la
nk

.)

la
dd

r:

S
ho

w
s

th
e

lo
gi

ca
l s

pa
ce

 a
dd

re
ss

 o
f

an
 e

nt
ry

 p
oi

nt
 in

 8
-d

ig
it

 f
ix

ed

he
xa

de
ci

m
al

 n
ot

at
io

n.

(I
f

th
e

en
tr

y
is

 n
ot

 b
ui

lt
 a

s
an

 I
R

G
L

B
, t

hi
s

fi
el

d
sh

ow
s

th
e

G
L

B

(s
ar

ea
)

ad
dr

es
s.

)
sa

ln
am

e:
 S

ho
w

s
th

e
na

m
e

of
 a

 s
ec

on
da

ry
 p

ar
ti

ti
on

 a
re

a
co

nt
ai

ni
ng

 a
n

en
tr

y.

If
 th

e
en

tr
y

ad
dr

es
s

is
 g

iv
en

 a
s

an
 a

bs
ol

ut
e

ad
dr

es
s,

 th
is

 f
ie

ld

di
sp

la
ys

 a
 s

tr
in

g
of

 a
st

er
is

ks
 (

*)
.

of
fs

et
:

S
ho

w
s

th
e

re
la

ti
ve

 o
ff

se
t b

et
w

ee
n

th
e

be
gi

nn
in

g
of

 a
 s

ec
on

da
ry

pa

rt
it

io
n

ar
ea

 a
nd

 a
n

en
tr

y
po

in
t i

n
6-

di
gi

t f
ix

ed
 h

ex
ad

ec
im

al

no
ta

ti
on

.
(b

)
G

L
B

 a
re

a
fi

el
d

ki
nd

:
S

ec
on

da
ry

 p
ar

ti
ti

on
 a

re
a

ty
pe

.
g
l
b
i

: R
ep

re
se

nt
s

a
re

ad
/w

ri
te

 g
lo

ba
l a

re
a

w
it

h
an

 in
it

ia
l v

al
ue

.

g
l
b
w

: R
ep

re
se

nt
s

a
re

ad
/w

ri
te

 g
lo

ba
l a

re
a

w
it

ho
ut

 a
n

in
it

ia
l v

al
ue

.
g
l
b
r

: R
ep

re
se

nt
s

a
re

ad
-o

nl
y

gl
ob

al
 a

re
a

w
it

h
an

 in
it

ia
l v

al
ue

.
c
m
i

:
R

ep
re

se
nt

s
an

 in
te

r-
P

U
 (

pr
oc

es
so

r)
 s

ha
re

d
m

em
or

y
ar

ea
 w

it
h

an
 in

it
ia

l v
al

ue
.

c
m
w

:
R

ep
re

se
nt

s
an

 in
te

r-
P

U
 (

pr
oc

es
so

r)
 s

ha
re

d
m

em
or

y
ar

ea

w
it

ho
ut

 a
n

in
it

ia
l v

al
ue

.
d
c
m
i

: R
ep

re
se

nt
s

a
du

pl
ex

ed
 (

in
te

r-
co

nt
ro

ll
er

)
sh

ar
ed

 m
em

or
y

ar
ea

w

it
h

an
 in

it
ia

l v
al

ue
.

d
c
m
w

: R
ep

re
se

nt
s

a
du

pl
ex

ed
 (

in
te

r-
co

nt
ro

ll
er

)
sh

ar
ed

 m
em

or
y

ar
ea

w

it
ho

ut
 a

n
in

it
ia

l v
al

ue
.

s:

In
di

ca
te

s
th

e
G

L
B

 s
ta

tu
s.

F

or
 d

et
ai

ls
 o

n
th

e
re

so
ur

ce
 s

ta
tu

s,
 s

ee
 T

ab
le

 A
-3

.
k:

In

di
ca

te
s

th
e

ow
ne

r
ty

pe
 (

s:
 s

ys
te

m
; u

: u
se

r)
.

an
am

e:

S
ho

w
s

th
e

na
m

e
of

 a
 p

ar
en

t s
pl

it
 a

re
a.

sa

si
ze

:
In

di
ca

te
s

th
e

ar
ea

 s
iz

e
in

 8
-d

ig
it

 f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

da

ta
si

ze
:

In
di

ca
te

s
th

e
da

ta
 s

iz
e

in
 8

-d
ig

it
 f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

ao
ff

:
S

ho
w

s
th

e
re

la
ti

ve
 b

yt
e

ad
dr

es
s

in
 r

el
at

io
n

to
 th

e
be

gi
nn

in
g

of
 a

sp

li
t a

re
a

in
 8

-d
ig

it
 f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

(c
)

D
et

ai
le

d
in

fo
rm

at
io

n
fi

el
d

da
te

:
S

ho
w

s
th

e
ti

m
e

at
 w

hi
ch

 a
 b

ui
ld

 w
as

 p
er

fo
rm

ed
 to

 c
re

at
e

an
 I

R
G

L
B

w

it
h
s
v
i
r
g
l
b

 o
r
s
v
d
f
s

-
e

.
If

 a
n

IR
G

L
G

 is
 n

ot
 b

ui
lt

, t
hi

s
fi

el
d

is
 b

la
nk

.
ld

da
te

:
S

ho
w

s
th

e
ti

m
e

of
 d

ow
nl

oa
di

ng
 to

 th
e

S
10

V
E

 m
em

or
y.

If

 n
o

su
ch

 d
ow

nl
oa

d
is

 c
om

pl
et

e,
 th

is
 f

ie
ld

 is
 b

la
nk

.

T
he

 d
et

ai
le

d
in

fo
rm

at
io

n
fi

el
d

ap
pe

ar
s

on
ly

 w
he

n
th

e
-
f

 o
pt

io
n

is
 s

pe
ci

fi
ed

.

<

g
l
o
b
a
l
,
C
M
,
D
C
M
,
i
r
g
l
b

>

[
m
a
x
_
e
n
t
r
y
=

m
en

tr
y,

u
s
e
_
e
n
t
r
y
=

ue
nt

ry
]

i
r
n
o

e
n
t
n
a
m
e

l
a
d
d
r

s
a
l
n
a
m
e

o
f
f
s
e
t

k
i
n
d

s

k

a
n
a
m
e

s
a
s
i
z
e

d
a
t
a
s
i
z
e

a
o
f
f

d
a
t
e

l
d
d
a
t
e

la
dd

r

sa
ln

am
e

0
0
0
0
0
0

ki
nd

s
k

an
am

e

sa
si

ze

da
ta

si
ze

ao
ff

ir
no

en
tn

am
e

s
k

la
dd

r

sa
ln

am
e

0
0
0
0
0
0

ki
nd

s
k

an
am

e

sa
si

ze

da
ta

si
ze

ao
ff

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

ir
no

en
tn

am
e

s
k

la
dd

r

sa
ln

am
e

of
fs

et

ki
nd

s
k

an
am

e

sa
si

ze

da
ta

si
ze

ao
ff

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

ir
no

en
tn

am
e

s
k

la
dd

r

*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
0
0
0

YY
Y

Y/
M

M
/D

D
 h

h:
m

m
:s

s
YY

Y
Y/

M
M

/D
D

 h
h:

m
m

:s
s

(a

)
IR

G
L

B
 e

nt
ry

 f
ie

ld

(b
)

G
L

B
 a

re
a

fi
el

d
(c

)
D

et
ai

le
d

in
fo

rm
at

io
n

fi
el

d

APPENDIX F MAP DISPLAY FORMAT

A-59

(1
2)

 U
L

S
U

B
 e

nt
ry

 in
fo

rm
at

io
n

pn

t:

In
di

ca
te

s
th

e
in

co
rp

or
at

io
n

po
in

t o
f

a
bu

il
t-

in
 s

ub
ro

ut
in

e.

ty
p:

In

di
ca

te
s

th
e

ty
pe

 (
O

S
 o

r
us

er
)

of
 a

 b
ui

lt
-i

n
su

br
ou

ti
ne

.
en

t:

In
di

ca
te

s
th

e
en

tr
y

nu
m

be
r

of
 a

 b
ui

lt
-i

n
su

br
ou

ti
ne

.
b:

In

di
ca

te
s

th
e

bu
il

d
st

at
us

 o
f

a
bu

il
t-

in
 s

ub
ro

ut
in

e.

F
or

 d
et

ai
ls

 o
n

th
e

re
so

ur
ce

 s
ta

tu
s,

 s
ee

 T
ab

le
 A

-3
.

su
bn

am
e:

S

ho
w

s
th

e
na

m
e

of
 a

 b
ui

lt
-i

n
su

br
ou

ti
ne

.
s:

In

di
ca

te
s

th
e

st
at

us
 o

f
a

bu
il

t-
in

 s
ub

ro
ut

in
e.

F

or
 d

et
ai

ls
 o

n
th

e
re

so
ur

ce
 s

ta
tu

s,
 s

ee
 T

ab
le

 A
-3

.
k:

In

di
ca

te
s

th
e

ow
ne

r
ty

pe
 (

s:
 s

ys
te

m
; u

: u
se

r)
.

te
xt

to
p:

S

ho
w

s
th

e
st

ar
t l

og
ic

al
 a

dd
re

ss
 o

f
a

te
xt

 p
ar

t i
n

8-
di

gi
t f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

bs
sl

as
t:

S

ho
w

s
th

e
en

d
lo

gi
ca

l a
dd

re
ss

 o
f

a
B

S
S

 p
ar

t i
n

8-
di

gi
t f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

T
he

 e
nd

 lo
gi

ca
l a

dd
re

ss
 is

 a
 v

al
ue

 in
cl

ud
in

g
th

e
re

du
nd

an
cy

 b
yt

e
si

ze
 (

ex
tr

a)
.

ts
iz

e:

S
ho

w
s

th
e

si
ze

 o
f

a
te

xt
 p

ar
t i

n
6-

di
gi

t f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

ds

iz
e:

S

ho
w

s
th

e
si

ze
 o

f
a

da
ta

 p
ar

t i
n

6-
di

gi
t f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

bs
iz

e:

S
ho

w
s

th
e

si
ze

 o
f

a
B

S
S

 p
ar

t i
n

6-
di

gi
t f

ix
ed

 h
ex

ad
ec

im
al

 n
ot

at
io

n.

ex
tr

a:

S
ho

w
s

th
e

re
du

nd
an

cy
 b

yt
e

si
ze

 s
pe

ci
fi

ed
 f

or
 a

 lo
ad

 o
pe

ra
tio

n
in

 6
-d

ig
it

 f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

ss

iz
e(

pa
rt

):
 S

ho
w

s
th

e
si

ze
 o

f
a

st
ac

k
in

 6
-d

ig
it

 f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

T

he
 (

pa
rt

)
se

ct
io

n
sh

ow
s

th
e

st
ac

k
si

ze
 f

or
 u

se
 b

y
th

e
su

bp
ro

gr
am

 s
pe

ci
fi

ed
 f

or
 th

e
lo

ad
er

.
da

ta
to

p:

S
ho

w
s

th
e

st
ar

t l
og

ic
al

 a
dd

re
ss

 o
f

a
da

ta
 p

ar
t i

n
8-

di
gi

t f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

bs

st
op

:
S

ho
w

s
th

e
st

ar
t l

og
ic

al
 a

dd
re

ss
 o

f
a

B
S

S
 p

ar
t i

n
8-

di
gi

t f
ix

ed
 h

ex
ad

ec
im

al
 n

ot
at

io
n.

da

te
:

S
ho

w
s

th
e

ti
m

e
at

 w
hi

ch
 a

 b
ui

ld
 w

as
 p

er
fo

rm
ed

 to
 c

re
at

e
a

bu
il

t-
in

 s
ub

ro
ut

in
e

w
it

h
s
v
b
u
i
l
d

.
If

 n
o

su
ch

 b
ui

ld
 w

as
 p

er
fo

rm
ed

, t
hi

s
fi

el
d

in
di

ca
te

s
th

e
ti

m
e

at
 w

hi
ch

 a
 lo

ad
 o

pe
ra

ti
on

 w
as

 p
er

fo
rm

ed
.

ld
da

te
:

S
ho

w
s

th
e

ti
m

e
of

 d
ow

nl
oa

di
ng

 to
 th

e
S

10
V

E
 m

em
or

y.

If
 n

o
su

ch
 d

ow
nl

oa
d

is
 c

om
pl

et
e,

 th
is

 f
ie

ld
 is

 b
la

nk
.

 T
he

 d
et

ai
le

d
in

fo
rm

at
io

n
fi

el
d

ap
pe

ar
s

on
ly

 w
he

n
th

e
-
f

 o
pt

io
n

is
 s

pe
ci

fi
ed

.

<

U
L
S
U
B

>

p
n
t

t
y
p

e
n
t

s
u
b
n
a
m
e

t
e
x
t
t
o
p

b
s
s
l
a
s
t

t
s
i
z
e

d
s
i
z
e

b
s
i
z
e

e
x
t
r
a

s
s
i
z
e
(
p
a
r
t

)

d
a
t
a
t
o
p

b
s
s
t
o
p

d
a
t
e

l
d
d
a
t
e

pn
t

ty
p

en
t

b
su

bn
am

e

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

YY
Y

Y/
M

M
/D

D
 h

h:
m

m
:s

s
YY

Y
Y/

M
M

/D
D

 h
h:

m
m

:s
s

APPENDIX F MAP DISPLAY FORMAT

A-60

(1
3)

 I
nf

or
m

at
io

n
ab

ou
t h

ow
 m

uc
h

ph
ys

ic
al

 m
em

or
y

is
 a

va
il

ab
le

u
s
e

: S
iz

e
of

 th
e

ph
ys

ic
al

 m
em

or
y

us
ed

 b
y

a
G

A
R

E
A

.
f
r
e
e

: S
iz

e
of

 th
e

ph
ys

ic
al

 m
em

or
y

th
at

 is
 f

re
e

fo
r

a
G

A
R

E
A

.
t
o
t
a
l

: P
hy

si
ca

l m
em

or
y

si
ze

 th
at

 w
as

 a
ll

oc
at

ed
 to

 a
 G

A
R

E
A

 a
t t

he
 ti

m
e

of
 s

it
e

co
ns

tr
uc

ti
on

.
 (1

4)
 H

ie
ra

rc
hi

ca
l m

ap
 o

ut
pu

t
T

he
 h

ie
ra

rc
hi

ca
l m

ap
 o

ut
pu

t i
s

ge
ne

ra
te

d
in

 th
e

fo
ll

ow
in

g
fo

rm
at

.
(a

)
ga

re
a/

ar
ea

 h
ie

ra
rc

hi
ca

l m
ap

 (
w

it
h

+
gn

, g
na

m
e,

 -
G

, a
nd

 -
a

sp
ec

if
ie

d)

N

ot
e:

 T
he

 d
is

pl
ay

 s
ho

w
s
d
a
t
e

, l
d
d
a
t
e

, a
nd

 s
v
d
a
t
e

 o
nl

y
w

he
n

th
e
-
f

 o
pt

io
n

is
 s

pe
ci

fi
ed

.

<

p
h
y
s
i
c
a
l

m
e
m
o
r
y

>

g
a
r
e
a

u
s
e

f
r
e
e

t
o
t
a
l

$
T
A
S
K

xx
x
K
b
y
t
e

yy
y
K
b
y
t
e

zz
z
K
b
y
t
e

$
G
L
B
R

xx
x
K
b
y
t
e

yy
y
K
b
y
t
e

zz
z
K
b
y
t
e

$
G
L
B
R
W

xx
x
K
b
y
t
e

yy
y
K
b
y
t
e

zz
z
K
b
y
t
e

$
I
R
S
U
B

xx
x
K
b
y
t
e

yy
y
K
b
y
t
e

zz
z
K
b
y
t
e

$
C
M

xx
x
K
b
y
t
e

yy
y
K
b
y
t
e

zz
z
K
b
y
t
e

$
D
C
M

xx
x
K
b
y
t
e

yy
y
K
b
y
t
e

zz
z
K
b
y
t
e

*
*

a
l
l
o
c
a
t
o
r

m
a
p

*
*

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

s
i
t
e

n
a
m
e

=

si
te

 <

g
a
r
e
a

>

g
n
a
m
e

l
a
d
d
r

p
a
d
d
r

s
i
z
e

gn
am

e

la
dd

r

pa
dd

r

si
ze

 <

a
r
e
a

>

g
a
r
e
a
/
a
n
a
m
e

r
a
d
d
r

s
i
z
e

l
a
d
d
r

b
k
u
p
f
i
l
e

d
a
t
e

l
d
d
a
t
e

s
v
d
a
t
e

ga
re

a/
an

am
e

s
k

ra
dd

r

si
ze

la
dd

r

bk
up

fil
e

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

ga
re

a/

ra
dd

r

si
ze

la
dd

r
 *
*

m
a
p

o
u
t
p
u
t

e
n
d

*
*

APPENDIX F MAP DISPLAY FORMAT

A-61

(b
)

ga
re

a/
ar

ea
/s

ar
ea

 h
ie

ra
rc

hi
ca

l m
ap

 (
w

it
h

+
gn

, g
na

m
e,

 -
G

, -
a,

 a
nd

 -
e

sp
ec

if
ie

d)

N
ot

e:
 T

he
 d

is
pl

ay
 s

ho
w

s
d
a
t
e

, l
d
d
a
t
e

, a
nd

 s
v
d
a
t
e

 o
nl

y
w

he
n

th
e
-
f

 o
pt

io
n

is
 s

pe
ci

fi
ed

.
(c

)
ar

ea
/s

ar
ea

 h
ie

ra
rc

hi
ca

l m
ap

 (
w

ith
 +

gn
, a

na
m

e,
 -

a,
 a

nd
 -

e
sp

ec
if

ie
d)

N
ot

e:
 T

he
 d

is
pl

ay
 s

ho
w

s
d
a
t
e

, l
d
d
a
t
e

, a
nd

 s
v
d
a
t
e

 o
nl

y
w

he
n

th
e
-
f

 o
pt

io
n

is
 s

pe
ci

fi
ed

.

*
*

a
l
l
o
c
a
t
o
r

m
a
p

*
*

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

s
i
t
e

n
a
m
e

=

si
te

 <

g
a
r
e
a

>

g
n
a
m
e

l
a
d
d
r

p
a
d
d
r

s
i
z
e

gn
am

e

la
dd

r

pa
dd

r

si
ze

 <

a
r
e
a

>

g
a
r
e
a
/
a
n
a
m
e

r
a
d
d
r

s
i
z
e

l
a
d
d
r

b
k
u
p
f
i
l
e

d
a
t
e

l
d
d
a
t
e

s
v
d
a
t
e

ga
re

a/
an

am
e

s
k

ra
dd

r

si
ze

la
dd

r

bk
up

fil
e

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

ga
re

a/

ra
dd

r

si
ze

la
dd

r
 <

s
a
r
e
a

>

g
a
r
e
a
/
a
n
a
m
e
/
s
n
a
m
e

r
a
d
d
r

s
i
z
e

l
a
d
d
r

d
a
t
e

l
d
d
a
t
e

s
v
d
a
t
e

ga
re

a/
an

am
e/

sn
am

e

s
k

ra
dd

r

si
ze

la
dd

r

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

ga
re

a/
an

am
e/

ra
dd

r

si
ze

la
dd

r
 *
*

m
a
p

o
u
t
p
u
t

e
n
d

*
*

*
*

a
l
l
o
c
a
t
o
r

m
a
p

*
*

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

s
i
t
e

n
a
m
e

=

si
te

 <

a
r
e
a

>

g
a
r
e
a
/
a
n
a
m
e

r
a
d
d
r

s
i
z
e

l
a
d
d
r

b
k
u
p
f
i
l
e

d
a
t
e

l
d
d
a
t
e

s
v
d
a
t
e

ga
re

a/
an

am
e

s
k

ra
dd

r

si
ze

la
dd

r

bk
up

fil
e

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

 <

s
a
r
e
a

>

g
a
r
e
a
/
a
n
a
m
e
/
s
n
a
m
e

r
a
d
d
r

s
i
z
e

l
a
d
d
r

d
a
t
e

l
d
d
a
t
e

s
v
d
a
t
e

ga
re

a/
an

am
e/

sn
am

e

s
k

ra
dd

r

si
ze

la
dd

r

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

YY
YY

/M
M

/D
D

 h
h:

m
m

:s
s

ga
re

a/
an

am
e/

ra
dd

r

si
ze

la
dd

r
 *
*

m
a
p

o
u
t
p
u
t

e
n
d

*
*

APPENDIX F MAP DISPLAY FORMAT

A-62

(1
5)

 D
ef

au
lt

 d
is

pl
ay

 f
or

m
at

(a

)
D

ef
au

lt
 d

is
pl

ay
 f

or
m

at
 (

no
 d

et
ai

le
d

in
fo

rm
at

io
n)

If

 y
ou

 s
pe

ci
fy

 th
e

-u
 o

pt
io

n
an

d
om

it
 a

ll
 o

th
er

 o
pt

io
ns

, t
he

 s
ys

te
m

 o
ut

pu
ts

 s
pl

it
 a

re
a

an
d

se
co

nd
ar

y
pa

rt
it

io
n

ar
ea

 li
st

in
gs

 s
or

te
d

by

ad
dr

es
s;

 ta
sk

, p
ro

gr
am

, I
R

S
U

B
, b

ui
lt

-i
n

su
br

ou
ti

ne
, a

nd
 I

R
G

L
B

 li
st

in
gs

 s
or

te
d

by
 n

um
be

r;
 a

nd
 V

A
L

 li
st

in
gs

 s
or

te
d

by
 n

am
e

w
it

h
no

de

ta
il

ed
 in

fo
rm

at
io

n
at

ta
ch

ed
. T

he
 d

is
pl

ay
 f

or
m

at
 is

 a
s

fo
ll

ow
s:

*
*

a
l
l
o
c
a
t
o
r

m
a
p

*
*

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

s
i
t
e

n
a
m
e

=

si
te

 <

g
a
r
e
a

>

g
n
a
m
e

l
a
d
d
r

p
a
d
d
r

s
i
z
e

gn
am

e

la
dd

r

pa
dd

r

si
ze

 <

a
r
e
a

>

g
a
r
e
a
/
a
n
a
m
e

r
a
d
d
r

s
i
z
e

l
a
d
d
r

k
i
n
d

b
k
u
p
f
i
l
e

ga
re

a/
an

am
e

s
k

ra
dd

r

si
ze

la
dd

r

ki
nd

bk
up

fi
le

ga
re

a/

ra
dd

r

si
ze

la
dd

r
 <

s
a
r
e
a

>

g
a
r
e
a
/
a
n
a
m
e
/
s
n
a
m
e

r
a
d
d
r

s
i
z
e

l
a
d
d
r

ga
re

a/
an

am
e/

sn
am

e

s
k

ra
dd

r

si
ze

la
dd

r

ga
re

a/
an

am
e/

ra
dd

r

si
ze

la
dd

r
 <

t
a
s
k
-
p
r
o
g
r
a
m

>

t
n

t
n
a
m
e

t
n
o
x

r
m
t
n

l
v
l

s
p

p
n
a
m
e

s
t

m
t
n

t
e
x
t
t
o
p

l
a
s
t
a
d
d
r

t
s
i
z
e

d
s
i
z
e

s
s
i
z
e
(
p
a
r
t

)

b
s
i
z
e

e
x
t
r
a

o
s
w
o
r
k

pn
am

e

s
k

st

m
tn

te
xt

to
p

la
st

ad
dr

ts
iz

e

ds
iz

e

ss
iz

e(
pa

rt
)

bs
iz

e

ex
tr

a

os
w

or
k

tn

tn
am

e

s
k

tn
ox

rm
tn

l
v
l

sp

pn
am

e

s
k

st

m
tn

te
xt

to
p

la
st

ad
dr

ts
iz

e

ds
iz

e

ss
iz

e(
pa

rt
)

bs
iz

e

ex
tr

a

os
w

or
k

 <

I
R
S
U
B

>

[
m
a
x
_
e
n
t
r
y
=

m
en

tr
y,

u
s
e
_
e
n
t
r
y
=

ue
nt

ry
]

i
r
n
o

e
n
t
n
a
m
e

s
t

l
a
d
d
r

s
u
b
n
a
m
e

o
f
f
s
e
t

t
e
x
t
t
o
p

b
s
s
l
a
s
t

t
s
i
z
e

d
s
i
z
e

b
s
i
z
e

e
x
t
r
a

s
s
i
z
e
(
p
a
r
t

)

en
tn

am
e

s
k

st

la
dd

r

su
bn

am
e

00
00

00

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

en
tn

am
e

s
k

st

la
dd

r

su
bn

am
e

of
fs

et

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

ir
no

en
tn

am
e

s
k

st

la
dd

r

su
bn

am
e

00
00

00

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

ir
no

en
tn

am
e

s
k

st

la
dd

r

su
bn

am
e

of
fs

et

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

 <

U
L
S
U
B

>

p
n
t

t
y
p

e
n
t

s
u
b
n
a
m
e

t
e
x
t
t
o
p

b
s
s
l
a
s
t

t
s
i
z
e

d
s
i
z
e

b
s
i
z
e

e
x
t
r
a

s
s
i
z
e
(
p
a
r
t

)

pn
t

ty
p

en
t

b
su

bn
am

e

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

 <

g
l
o
b
a
l
,
C
M
,
D
C
M
,
i
r
g
l
b

>

[
m
a
x
_
e
n
t
r
y
=

m
en

tr
y,

u
s
e
_
e
n
t
r
y
=

ue
nt

ry
]

i
r
n
o

e
n
t
n
a
m
e

l
a
d
d
r

s
a
l
n
a
m
e

o
f
f
s
e
t

k
i
n
d

s

k

a
n
a
m
e

s
a
s
i
z
e

d
a
t
a
s
i
z
e

a
o
f
f

sa
ln

am
e

00
00

00

ki
nd

s
k

an
am

e

sa
si

ze

da
ta

si
ze

ao
ff

ir
no

en
tn

am
e

s
k

la
dd

r

sa
ln

am
e

00
00

00

ki
nd

s
k

an
am

e

sa
si

ze

da
ta

si
ze

ao
ff

ir
no

en
tn

am
e

s
k

la
dd

r

sa
ln

am
e

of
fs

et

ki
nd

s
k

an
am

e

sa
si

ze

da
ta

si
ze

ao
ff

ir
no

en
tn

am
e

s
k

la
dd

r

**
**

**
**

**
**

**

00
00

00

 <

v
a
l
u
e

>

[
m
a
x
_
e
n
t
r
y
=

m
en

tr
y,

u
s
e
_
e
n
t
r
y
=

ue
nt

ry
]

e
n
a
m
e

v
a
l
h
e
x

v
a
l
d
e
c

e
n
a
m
e

k
va

lh
ex

va

ld
ec

 *
*

m
a
p

o
u
t
p
u
t

e
n
d

*
*

APPENDIX F MAP DISPLAY FORMAT

A-63

(b
)

D
ef

au
lt

 d
is

pl
ay

 f
or

m
at

 (
de

ta
il

 d
is

pl
ay

)
If

 y
ou

 s
pe

ci
fy

 th
e
-
u

 a
nd

 -
f

 o
pt

io
ns

 a
nd

 o
m

it
 a

ll
 o

th
er

 o
pt

io
ns

, t
he

 s
ys

te
m

 o
ut

pu
ts

 s
pl

it
 a

re
a

an
d

se
co

nd
ar

y
pa

rt
it

io
n

ar
ea

 li
st

in
gs

 s
or

te
d

by
 a

dd
re

ss
; t

as
k,

 p
ro

gr
am

, I
R

S
U

B
, b

ui
lt

-i
n

su
br

ou
ti

ne
, a

nd
 I

R
G

L
B

 li
st

in
gs

 s
or

te
d

by
 n

um
be

r;
 a

nd
 V

A
L

 li
st

in
gs

 s
or

te
d

by
 n

am
e

w
it

h
de

ta
il

ed
 in

fo
rm

at
io

n
at

ta
ch

ed
. T

he
 d

is
pl

ay
 f

or
m

at
 is

 a
s

fo
ll

ow
s:

*
*

a
l
l
o
c
a
t
o
r

m
a
p

*
*

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

s
i
t
e

n
a
m
e

=

si
te

 <

g
a
r
e
a

>

g
n
a
m
e

l
a
d
d
r

p
a
d
d
r

s
i
z
e

gn
am

e
la

dd
r

pa
dd

r

si
ze

 <

a
r
e
a

>

g
a
r
e
a
/
a
n
a
m
e

r
a
d
d
r

s
i
z
e

l
a
d
d
r

k
i
n
d

b
k
u
p
f
i
l
e

d
a
t
e

l
d
d
a
t
e

s
v
d
a
t
e

ga
re

a/
an

am
e

s
k

ra
dd

r

si
ze

la
dd

r

ki
nd

bk
up

fi
le

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

YY
Y

Y
/M

M
/D

D
 h

h:
m

m
:s

s
ga

re
a/

ra
dd

r

si
ze

la
dd

r
 <

s
a
r
e
a

>

g
a
r
e
a
/
a
n
a
m
e
/
s
n
a
m
e

r
a
d
d
r

s
i
z
e

l
a
d
d
r

d
a
t
e

l
d
d
a
t
e

s
v
d
a
t
e

ga
re

a/
an

am
e/

sn
am

e

s
k

ra
dd

r

si
ze

la
dd

r
Y

Y
Y

Y
/M

M
/D

D
 h

h:
m

m
:s

s
Y

Y
Y

Y
/M

M
/D

D
 h

h:
m

m
:s

s
Y

Y
Y

Y
/M

M
/D

D
 h

h:
m

m
:s

s
ga

re
a/

an
am

e/

ra
dd

r

si
ze

la
dd

r
 <

t
a
s
k
-
p
r
o
g
r
a
m

>

t
n

t
n
a
m
e

t
n
o
x

r
m
t
n

l
v
l

s
p

p
n
a
m
e

s
t

m
t
n

t
e
x
t
t
o
p

l
a
s
t
a
d
d
r

t
s
i
z
e

d
s
i
z
e

s
s
i
z
e
(
p
a
r
t

)

b
s
i
z
e

e
x
t
r
a

o
s
w
o
r
k

da
ta

to
p

bs
st

op

d
a
t
e

l
d
d
a
t
e

pn
am

e

s
k

st

m
tn

te

xt
to

p

la
st

ad
dr

ts
iz

e

ds
iz

e

ss
iz

e(
pa

rt
)

bs
iz

e

ex
tr

a

os
w

or
k

da
ta

to
p

bs
st

op

tn

tn
am

e

s
k

tn
ox

rm
tn

l
v
l

sp

pn
am

e

s
k

st

m
tn

te

xt
to

p

la
st

ad
dr

ts
iz

e

ds
iz

e

ss
iz

e(
pa

rt
)

bs
iz

e

ex
tr

a

os
w

or
k

da
ta

to
p

bs
st

op

Y
Y

YY
/M

M
/D

D
 h

h:
m

m
:s

s
Y

Y
YY

/M
M

/D
D

hh

:m
m

:s
s

 <

I
R
S
U
B

>

[
m
a
x
_
e
n
t
r
y
=

m
en

tr
y,

u
s
e
_
e
n
t
r
y
=

ue
nt

ry
]

i
r
n
o

e
n
t
n
a
m
e

l
a
d
d
r

s
u
b
n
a
m
e

o
f
f
s
e
t

t
e
x
t
t
o
p

b
s
s
l
a
s
t

t
s
i
z
e

d
s
i
z
e

b
s
i
z
e

e
x
t
r
a

s
s
i
z
e
(
p
a
r
t

)

da
ta

to
p

bs
st

op

d
a
t
e

l
d
d
a
t
e

en
tn

am
e

s
k

la
dd

r

su
bn

am
e

00
00

00

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

en
tn

am
e

s
k

la
dd

r

su
bn

am
e

of
fs

et

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

ir
no

en
tn

am
e

s
k

la
dd

r

su
bn

am
e

00
00

00

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

Y
Y

Y
Y/

M
M

/D
D

 h
h:

m
m

:s
s

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

ir
no

en
tn

am
e

s
k

la
dd

r

su
bn

am
e

of
fs

et

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

Y
Y

Y
Y/

M
M

/D
D

 h
h:

m
m

:s
s

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

 <

U
L
S
U
B

>

p
n
t

t
y
p

e
n
t

s
u
b
n
a
m
e

t
e
x
t
t
o
p

b
s
s
l
a
s
t

t
s
i
z
e

d
s
i
z
e

b
s
i
z
e

e
x
t
r
a

s
s
i
z
e
(
p
a
r
t

)

da
ta

to
p

bs
st

op

d
a
t
e

l
d
d
a
t
e

pn
t

ty
p

en
t

b
su

bn
am

e

s
k

te
xt

to
p

bs
sl

as
t

ts
iz

e

ds
iz

e

bs
iz

e

ex
tr

a

ss
iz

e(
pa

rt
)

da
ta

to
p

bs
st

op

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

 <

I
R
G
L
B

G
L
B

>

[
m
a
x
_
e
n
t
r
y
=

m
en

tr
y,

u
s
e
_
e
n
t
r
y
=

ue
nt

ry
]

i
r
n
o

e
n
t
n
a
m
e

l
a
d
d
r

s
a
l
n
a
m
e

o
f
f
s
e
t

k
i
n
d

s

k

a
n
a
m
e

s
a
s
i
z
e

d
a
t
a
s
i
z
e

a
o
f
f

d
a
t
e

l
d
d
a
t
e

sa
ln

am
e

00
00

00

ki
nd

s
k

an
am

e

sa
si

ze

da
ta

si
ze

ao
ff

ir
no

en
tn

am
e

s
k

la
dd

r

sa
ln

am
e

00
00

00

ki
nd

s
k

an
am

e

sa
si

ze

da
ta

si
ze

ao
ff

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

ir
no

en
tn

am
e

s
k

la
dd

r

sa
ln

am
e

of
fs

et

ki
nd

s
k

an
am

e

sa
si

ze

da
ta

si
ze

ao
ff

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

ir
no

en
tn

am
e

s
k

la
dd

r

**
**

**
**

**
**

**

00
00

00

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

Y
Y

Y
Y

/M
M

/D
D

 h
h:

m
m

:s
s

 <

v
a
l
u
e

>

[
m
a
x
_
e
n
t
r
y
=

m
en

tr
y,

u
s
e
_
e
n
t
r
y
=

ue
nt

ry
]

e
n
a
m
e

v
a
l
h
e
x

v
a
l
d
e
c

d
a
t
e

e
n
a
m
e

k
va

lh
ex

va

ld
ec

Y
Y

Y
Y/

M
M

/D
D

 h
h:

m
m

:s
s

 *
*

m
a
p

o
u
t
p
u
t

e
n
d

*
*

APPENDIX G DISPLAY FORMATS OF md AND sd OF svdebug (ONLINE DEBUGGER)

A-64

APPENDIX G DISPLAY FORMATS OF md AND sd OF svdebug
(ONLINE DEBUGGER)

(1) Display format of the md subcommand
 Format of display (print) data

0xaaaaaaaa dddddddd dddddddd dddddddd dddddddd '................'
 Address Displayed data Character code

Address: First address of the displayed data, in hexadecimal.
Displayed data: The content at the address is displayed by using the specified data length in

the specified output format.
Up to 16 bytes of data can be displayed on a single line.
When the floating-point data output format is used (-f -l, -fd) and the
following data is at the address, the data is displayed in hexadecimal. The
corresponding character string is displayed after the hexadecimal display.

Floating-point data
Character

string

Display example

Single precision Double precision

Non-numeric Na 0x7fffffff: Na 0xfff00000 0x00000001: Na

Infinite In 0x7f800000: In 0xfff00000 0x00000000: In

Maximum expressible value Ma 0x7f7fffff: Ma 0x7fefffff 0xffffffff: Ma

Minimum expressible value Mi 0xff7fffff: Mi 0xffefffff 0xffffffff: Mi

Character code: For the hexadecimal data output format (-h) only, data is converted into

character codes and is displayed on the right side of the window. Data that
cannot be converted is shown as periods (.).

When a line has the same data as the previous line, the following message is displayed (when
the -all option is specified, the display shows all consecutive data):

0xaaaaaaaa-0xaaaaaaaa as previous

First address of identical data

Last address of identical data

 Format of modification (patch) data

0xaaaaaaaa dddddddd :
 Address Display data

APPENDIX G DISPLAY FORMATS OF md AND sd OF svdebug (ONLINE DEBUGGER)

A-65

 Examples
The following are examples displayed by md with various combinations of data output format
options and data length options:

Four-byte display in

hexadecimal (-h, -l)

Two-byte display in

hexadecimal (-h, -w)

One-byte display in

hexadecimal (-h, -b)

Four-byte display in

decimal (-d, -l)

Two-byte display in

decimal (-d, -w)

One-byte display in

decimal (-d, -b)

Single-precision real

number display (-f, -l)

Double-precision real

number display (-fd)

0x00ec0000 0000000a 00000064 000003e8 00002710 '.......d......'.'

0x00ec0010 000186a0 '.... '

0x00ec0000 0000 000a 0000 0064 0000 03e8 0000 2710 '.......d......'.'

0x00ec0010 0001 86a0 '.... '

0x00ec0000 00 00 00 0a 00 00 00 64 00 00 03 e8 00 00 27 10 '.......d......'.'

0x00ec0010 00 01 86 a0 '.... '

0x00ec0000 10 100 1000 10000

0x00ec0010 100000

0x00ec0000 0 10 0 100 0 1000 0 10000

0x00ec0010 1 -31072

0x00ec0000 0 0 0 10 0 0 0 100 0 0 3 -24 0 0

 39 16

0x00ec0010 0 1 -122 -96

0x00ec0020 1.1200000 2.1229999 10.1230001 20.1233997

0x00ec0030 100.123451

0x96000000 1.000000000000000E+00 2.000000000000000E+00

0x96000010 -1.000000000000000E+00 1.000000000000000E+100

0x96000020 0x7fefffff 0xffffffff:Ma 0xffefffff 0xffffffff:Mi

*********|*********|*********|*********|*********|*********|*********|*********|

APPENDIX G DISPLAY FORMATS OF md AND sd OF svdebug (ONLINE DEBUGGER)

A-66

(2) Display format of sd

 Format of display (print) data

0xaaaaaaaa(0xllllll) dddddddd dddddddd dddddddd dddddddd '................'
 Address Offset Displayed data Character code

Address: First address of the displayed data, in hexadecimal.
Offset: Offset relative to the beginning of the data.
Displayed data: The content at the address is displayed by using the specified data length in

the specified output format. Up to 16 bytes of data can be displayed on a
single line.
When the floating-point data output format is used (-f -l, -fd) and the
following data is at the address, the data is displayed in hexadecimal. The
corresponding character string is displayed after the hexadecimal display.

Floating-point data
Character

string

Display example

Single precision Double precision

Non-numeric Na 0x7fffffff: Na 0xfff00000 0x00000001: Na

Infinite In 0x7f800000: In 0xfff00000 0x00000000: In

Maximum expressible value Ma 0x7f7fffff: Ma 0x7fefffff 0xffffffff: Ma

Minimum expressible value Mi 0xff7fffff: Mi 0xffefffff 0xffffffff: Mi

Character code: For the hexadecimal data output format (-h) only, data is converted into

character codes and is displayed on the right side of the window. Data that
cannot be converted is shown as periods (.).

When a line has the same data as the previous line, the following message is displayed (when
the -all option is specified, the display shows all consecutive data):

0xaaaaaaaa-0xaaaaaaaa(0xllllll-0xllllll) as previous

First address of identical data

Last address of identical data

First offset of identical data

Last offset of identical data

 Format of modification (patch) data

0xaaaaaaaa(0xllllll) dddddddd :
 Address Offset Display data

APPENDIX G DISPLAY FORMATS OF md AND sd OF svdebug (ONLINE DEBUGGER)

A-67

 Examples
The following are examples displayed by sd with various combinations of data output format
options and data length options:

Four-byte display in

hexadecimal (-h, -l)

Two-byte display in

hexadecimal (-h, -w)

One-byte display in

hexadecimal (-h, -b)

Four-byte display in

decimal (-d, -l)

Two-byte display in

decimal (-d, -w)

One-byte display in

decimal (-d, -b)

Single-precision real

number display (-f, -l)

Double-precision real

number display (-fd)

0x00ec0000(0x000000) 0000000a 00000064 000003e8 00002710 '.......d......'.'

0x00ec0010(0x000010) 000186a0 '.... '

0x00ec0000(0x000000) 0000 000a 0000 0064 0000 03e8 0000 2710 '.......d......'.'

0x00ec0010(0x000010) 0001 86a0 '.... '

0x00ec0000(0x000010) 00 00 00 0a 00 00 00 64 00 00 03 e8 00 00 27 10 '.......d.

.....'.'

0x00ec0010(0x000010) 00 01 86 a0 '....

 '

0x00ec0000(0x000000) 10 100 1000 10000

0x00ec0010(0x000010) 100000

0x00ec0000(0x000000) 0 10 0 100 0 1000 0 10000

0x00ec0010(0x000010) 1 -31072

0x00ec0000(0x000000) 0 0 0 10 0 0 0 100 0 0 3 -24

 0 0 39 16

0x00ec0010(0x000010) 0 1 -122 -96

0x00ec0020(0x000000) 1.1200000 2.1229999 10.1230001 20.1233997

0x00ec0030(0x000010) 100.123451

0x96000000(0x000000) 1.000000000000000E+00 2.000000000000000E+00

0x96000010(0x000010) -1.000000000000000E+00 1.000000000000000E+100

0x96000020(0x000020) 0x7fefffff 0xffffffff:Ma 0xffefffff 0xffffffff:Mi

*********|*********|*********|*********|*********|*********|*********|*********|

APPENDIX H LIST OF STACK SIZES FOR LIBRARY USE

A-68

APPENDIX H LIST OF STACK SIZES FOR LIBRARY USE

The following are lists of the stack sizes used by the libraries.

(1) List of stack sizes of the C standard library

No.
Function

name

Stack size
No.

Function
name

Stack size

libsh4nbmdn.lib libsh4nbmzz.lib libsh4nbmdn.lib libsh4nbmzz.lib

1 atof 440 436 22 strtol 68

2 frexp 8 23 vsprintf 804

3 ldexp 20 24 acos 96

4 memchr 0 25 asin 80

5 memset 4 26 atan 60

6 modf 40 27 atan2 124

7 sscanf 532 28 ceil 28

8 sprintf 804 29 exp 48

9 strcat 0 30 fabs 0

10 strchr 0 31 floor 28

11 strcmp 0 32 fmod 36

12 strcpy 24 33 log 48

13 strcspn 0 34 log10 48

14 strlen 0 35 pow 96

15 strncat 4 36 cos 60

16 strncmp 4 37 sin 60

17 strncpy 0 38 cosh 68

18 strpbrk 0 39 sinh 60

19 strrchr 12 40 sqrt 8

20 strspn 0 41 tan 32

21 strtod 440 436 42 tanh 60

APPENDIX H LIST OF STACK SIZES FOR LIBRARY USE

A-69

(2) List of stack sizes of libfirad.lib

No. Function name Stack size
1 irglbad 0
2 irsubad 0

(3) List of stack sizes of libcrs.lib

No. Function name Stack size
1 fpgetmask 0
2 fpgetround 0
3 fpgetsticky 0
4 fpsetmask 0
5 fpsetround 0
6 fpsetsticky 0
7 fpcheck 0
8 fpchecko 0

(4) List of stack sizes of libcpms.lib

No. Function name Stack size
1 memcpy (*) 28

(*) In a program or subprogram loaded by the loader, the
memcpy() function of the CPMS library is used
instead of the memcpy() function of the C standard
library.

This Page Intentionally Left Blank

	Cover
	Copyright
	SAFETY PRECAUTIONS
	Revision History
	PREFACE
	CONTENTS
	FIGURES
	TABLES
	PART 1 GENERAL DESCRIPTION
	CHAPTER 1 OVERVIEW
	1.1 About RPDP
	1.2 Commands
	1.3 Using the Different Processors (CP and HP)
	1.3.1 Configuration and roles
	1.3.2 Programming environment
	1.3.3 RPDP functions and specifications of the CP and HP sites

	CHAPTER 2 PROCEDURES FOR PROGRAM DEVELOPMENT
	2.1 Overall Flow
	2.2 Site Environment
	2.2.1 Connection to S10VE by specifying site

	2.3 Area Management and Area Divisions in the Main Memory
	2.4 Area Allocation for Tasks
	2.5 Area Allocation for IRSUBs
	2.6 Loading Programs and Creating Tasks
	2.7 Indirect Link Resident Subprograms
	2.8 Global (GLB)
	2.9 Inter-PU Shared Memory (CM)
	2.10 Value (VAL)
	2.11 Indirect Link Global Data
	2.12 Programming Guide for GLB, VAL, and IRSUB
	2.13 Constraints on CPMS Program Creation

	CAHAPTER 3 INSTALLATION AND EXECUTION ENVIRONMENT
	3.1 Installation
	3.2 Prerequisite Software Products
	3.3 Notes on Installation
	3.3.1 Notes on installing RPDP
	3.3.2 Notes on installing the SHC compiler

	3.4 RPDP Execution Environment
	3.5 Registering an RPDP User Account
	3.5.1 Registering a new account
	3.5.2 Adding RPDPusers as a group to which an existing account belongs

	CHAPTER 4 COMPILER
	4.1 Details of C Compiler Options
	4.2 Notes on Compiling
	4.2.1 Compiling by using shc

	4.3 shc Version Comparisons
	4.3.1 Command line options

	4.4 Data Generator

	CHAPTER 5 PROGRAMMING COMMANDS
	5.1 Notes on Programming Commands

	CHAPTER 6 ALLOCATOR
	6.1 Allocating and Deallocating Split Areas
	6.1.1 Necessity for split areas
	6.1.2 Allocating split areas
	6.1.3 Deallocating split areas
	6.1.4 Assigning names to GLB and VAL
	6.1.5 Allocating split areas for the CM

	6.2 Value (VAL) Registration and Deletion

	CHAPTER 7 LOADER
	7.1 Linking and Loading
	7.2 Loader Operating Environment
	7.3 Library Search Paths
	7.4 Notes on Linking and Loading

	CHAPTER 8 BUILDER
	8.1 Registering and Deleting Tasks
	8.1.1 About tasks
	8.1.2 Registering a task
	8.1.3 Deleting a task

	8.2 Registering and Deleting a Resident Subprogram
	8.2.1 About indirect link subprograms (IRSUBs)
	8.2.2 Registering an indirect link subprogram (IRSUB)
	8.2.3 Deleting an indirect link subprogram (IRSUB)

	8.3 Registering and Deleting a Built-in Subroutine
	8.3.1 About built-in routines
	8.3.2 Registering a built-in subroutine
	8.3.3 Deleting a built-in subroutine

	CHAPTER 9 MAP
	9.1 Purpose of Displaying Allocator Management Table Information
	9.2 svmap Command Options and Displayed Information
	9.2.1 Map information that is output
	9.2.2 Description of output map information
	9.2.3 Map information output format

	9.3 Logical Address Specification and Information Displayed by the svadm Command

	CHAPTER 10 STARTUP AND PU CONTROL
	10.1 Overview
	10.2 Basic Concept of Startup and PU Control
	10.3 Startup and PU Control Procedure
	10.4 Startup and Stop Types
	10.5 PU State Transitions
	10.5.1 Startup procedure
	10.5.2 PU control procedure

	CHAPTER 11 svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT FUNCTIONS
	11.1 Overview
	11.2 S10VE Status and Subcommand Availability
	11.3 Basic Functions
	11.4 Other Functions
	11.5 Debug Support Commands
	11.5.1 svelog command
	11.5.2 svdhp command
	11.5.3 svcpunow command
	11.5.4 svtimex command

	PART 2 COMMAND REFERENCE
	CHAPTER 1 COMPILER
	svdatagen

	CHAPTER 2 PROGRAMMING COMMAND
	makehce

	CHAPTER 3 ALLOCATOR
	svdfa
	svdla
	svdfs
	svdls
	svdfv
	svdlv

	CHAPTER 4 LOADER
	svload
	svdload
	svcomp

	CHAPTER 5 BUILDER
	svctask
	svdtask
	svbuild
	svdbuild
	svirglb

	CHAPTER 6 MANAGEMENT TOOL
	svmap
	svadm
	svsitecntl

	CHAPTER 7 STARTUP AND PU CONTROL
	svrpl
	svcpuctl

	CHAPTER 8 svdebug (ONLINE DEBUGGER) AND DEBUG SUPPORT COMMANDS
	svdebug
	qu
	ab
	re
	ta
	su
	rs
	tm
	ct
	sht
	md
	sd
	bs
	bg
	mcp
	mmv
	mf
	el
	ss
	st
	gt
	br/stickybr
	rb
	rd
	rr
	go
	ld
	sv
	cm
	dr
	ds
	svdhp
	svadm
	si
	sp
	ps
	pe
	ver
	lbr
	lrb
	lrd
	lrr
	lgo
	s
	help
	q
	!
	svelog
	svdhp
	svcpunow
	svtimex

	APPENDIXES
	APPENDIX A NAMES USABLE IN PROGRAMS
	APPENDIX B LIBRARIES
	APPENDIX C SITE MANAGEMENT FILES
	APPENDIX D ERROR MESSAGES
	APPENDIX E NOTES ON USING RPDP
	APPENDIX F MAP DISPLAY FORMAT
	APPENDIX G DISPLAY FORMATS OF md AND sd OF svdebug (ONLINE DEBUGGER)
	APPENDIX H LIST OF STACK SIZES FOR LIBRARY USE

